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SUMMARY

The report gives a defining description of the programming
language Scheme. Scheme is a statically scoped and prop-
erly tail recursive dialect of the Lisp programming language
invented by Guy Lewis Steele Jr. and Gerald Jay Sussman.
It was designed to have an exceptionally clear and simple
semantics and few different ways to form expressions. A
wide variety of programming paradigms, including impera-
tive, functional, and object-oriented styles, find convenient
expression in Scheme.

The introduction offers a brief history of the language and
of the report.

The first three chapters present the fundamental ideas of
the language and describe the notational conventions used
for describing the language and for writing programs in the
language.

Chapters 4 and 5 describe the syntax and semantics of
expressions, definitions, programs, and libraries.

Chapter 6 describes Scheme’s built-in procedures, which
include all of the language’s data manipulation and in-
put/output primitives.

Chapter 7 provides a formal syntax for Scheme written in
extended BNF, along with a formal denotational semantics.
An example of the use of the language follows the formal
syntax and semantics.

Appendix A provides a list of the standard libraries and
the identifiers that they export.

Appendix B provides a list of optional but standardized
implementation feature names.

The report concludes with a list of references and an al-
phabetic index.

*** DRAFT***
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INTRODUCTION

Programming languages should be designed not by piling
feature on top of feature, but by removing the weaknesses
and restrictions that make additional features appear nec-
essary. Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions on how
they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support
most of the major programming paradigms in use today.

Scheme was one of the first programming languages to in-
corporate first class procedures as in the lambda calculus,
thereby proving the usefulness of static scope rules and
block structure in a dynamically typed language. Scheme
was the first major dialect of Lisp to distinguish procedures
from lambda expressions and symbols, to use a single lex-
ical environment for all variables, and to evaluate the op-
erator position of a procedure call in the same way as an
operand position. By relying entirely on procedure calls
to express iteration, Scheme emphasized the fact that tail-
recursive procedure calls are essentially GOTO’s that pass
arguments, thus allowing a programming style that is both
coherent and efficient. Scheme was the first widely used
programming language to embrace first class escape proce-
dures, from which all previously known sequential control
structures can be synthesized. A subsequent version of
Scheme introduced the concept of exact and inexact num-
bers, an extension of Common Lisp’s generic arithmetic.
More recently, Scheme became the first programming lan-
guage to support hygienic macros, which permit the syntax
of a block-structured language to be extended in a consis-
tent and reliable manner.

Background

The first description of Scheme was written in 1975 [36]. A
revised report [33] appeared in 1978, which described the
evolution of the language as its MIT implementation was
upgraded to support an innovative compiler [34]. Three
distinct projects began in 1981 and 1982 to use variants
of Scheme for courses at MIT, Yale, and Indiana Univer-
sity [29, 25, 16]. An introductory computer science text-
book using Scheme was published in 1984 [3].

As Scheme became more widespread, local dialects be-
gan to diverge until students and researchers occasion-
ally found it difficult to understand code written at other
sites. Fifteen representatives of the major implementations
of Scheme therefore met in October 1984 to work toward
a better and more widely accepted standard for Scheme.
Their report, the RRRS [8], was published at MIT and In-
diana University in the summer of 1985. Further revision
took place in the spring of 1986, resulting in the R3RS [31].
Work in the spring of 1988 resulted in R4RS [10], which
became the basis for the IEEE Standard for the Scheme

Programming Language in 1991 [20]. In 1998, several ad-
ditions to the IEEE standard, including high-level hygienic
macros, multiple return values and eval, were finalized as
the R5RS [2].

In the fall of 2006, work began on a more ambitious stan-
dard, including many new improvements and stricter re-
quirements made in the interest of improved portability.
The resulting standard, the R6RS, was completed in Au-
gust 2007 [1], and was organized as a core language and
set of mandatory standard libraries. The size and goals of
the R6RS, however, were controversial, and adoption of the
new standard was not as widespread as had been hoped.

In consequence, the Scheme Steering Committee decided in
August 2009 to divide the standard into two separate but
compatible languages — a “small” language, suitable for
educators, researchers and embedded languages, focused
on R5RS compatibility, and a “large” language focused on
the practical needs of mainstream software development
which would evolve to become a replacement for R6RS.
The present report describes the “small” language of that
effort.

We intend this report to belong to the entire Scheme com-
munity, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors
of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.
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DESCRIPTION OF THE LANGUAGE

1. Overview of Scheme

1.1. Semantics

This section gives an overview of Scheme’s semantics. A
detailed informal semantics is the subject of chapters 3
through 6. For reference purposes, section 7.2 provides a
formal semantics of Scheme.

Scheme is a statically scoped programming language. Each
use of a variable is associated with a lexically apparent
binding of that variable.

Scheme is a dynamically typed language. Types are asso-
ciated with values (also called objects) rather than with
variables. Statically typed languages, by contrast, asso-
ciate types with variables and expressions as well as with
values.

All objects created in the course of a Scheme computation,
including procedures and continuations, have unlimited ex-
tent. No Scheme object is ever destroyed. The reason that
implementations of Scheme do not (usually!) run out of
storage is that they are permitted to reclaim the storage
occupied by an object if they can prove that the object
cannot possibly matter to any future computation.

Implementations of Scheme are required to be properly
tail-recursive. This allows the execution of an iterative
computation in constant space, even if the iterative compu-
tation is described by a syntactically recursive procedure.
Thus with a properly tail-recursive implementation, iter-
ation can be expressed using the ordinary procedure-call
mechanics, so that special iteration constructs are useful
only as syntactic sugar. See section 3.5.

Scheme procedures are objects in their own right. Proce-
dures can be created dynamically, stored in data structures,
returned as results of procedures, and so on.

One distinguishing feature of Scheme is that continuations,
which in most other languages only operate behind the
scenes, also have “first-class” status. Continuations are
useful for implementing a wide variety of advanced control
constructs, including non-local exits, backtracking, and
coroutines. See section 6.10.

Arguments to Scheme procedures are always passed by
value, which means that the actual argument expressions
are evaluated before the procedure gains control, regardless
of whether the procedure needs the result of the evaluation.

Scheme’s model of arithmetic is designed to remain as in-
dependent as possible of the particular ways in which num-
bers are represented within a computer. In Scheme, every
integer is a rational number, every rational is a real, and
every real is a complex number. Thus the distinction be-
tween integer and real arithmetic, so important to many
programming languages, does not appear in Scheme. In

its place is a distinction between exact arithmetic, which
corresponds to the mathematical ideal, and inexact arith-
metic on approximations. Exact arithmetic is not limited
to integers.

1.2. Syntax

Scheme, like most dialects of Lisp, employs a fully paren-
thesized prefix notation for programs and other data; the
grammar of Scheme generates a sublanguage of the lan-
guage used for data. An important consequence of this
simple, uniform representation is that Scheme programs
and data can easily be treated uniformly by other Scheme
programs. For example, the eval procedure evaluates a
Scheme program expressed as data.

The read procedure performs syntactic as well as lexical
decomposition of the data it reads. The read procedure
parses its input as data (section 7.1.2), not as program.

The formal syntax of Scheme is described in section 7.1.

1.3. Notation and terminology

1.3.1. Base and optional features

Every identifier defined in this report appears in one of
several libraries. Identifiers defined in the base library are
not marked specially in the body of the report. A summary
of all the standard libraries and the features they provide
is given in Appendix A.

Implementations must provide the base library and all the
identifiers exported from it. Implementations are free to
provide or omit the other libraries given in this report, but
each library must either be provided in its entirety, export-
ing no additional identifiers, or else omitted altogether.

Implementations may provide other libraries not described
in this report. Implementations may also extend the func-
tion of any identifier in this report, provided the extensions
are not in conflict with the language reported here. In par-
ticular, implementations must support portable code by
providing a mode of operation in which the lexical syntax
does not conflict with the lexical syntax described in this
report.

1.3.2. Error situations and unspecified behavior

When speaking of an error situation, this report uses the
phrase “an error is signalled” to indicate that implementa-
tions must detect and report the error. An error is signalled
by raising a non-continuable exception, as if by the proce-
dure raise as described in section 6.11. The object raised
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is implementation-dependent and need not be a newly al-
located object every time. In addition to errors signalled
by situations described in this report, programmers may
signal their own errors and handle signalled errors.

If such wording does not appear in the discussion of an
error, then implementations are not required to detect or
report the error, though they are encouraged to do so. Such
a situation is sometimes, but not always, referred to with
the phrase “an error.” For example, it is an error for a pro-
cedure to be passed an argument of a type that the proce-
dure is not explicitly specified to handle, even though such
domain errors are seldom mentioned in this report. Imple-
mentations may extend a procedure’s domain of definition
to include such arguments.

This report uses the phrase “may report a violation of an
implementation restriction” to indicate circumstances un-
der which an implementation is permitted to report that
it is unable to continue execution of a correct program
because of some restriction imposed by the implementa-
tion. Implementation restrictions are discouraged, but im-
plementations are encouraged to report violations of im-
plementation restrictions.

For example, an implementation may report a violation of
an implementation restriction if it does not have enough
storage to run a program, or if an arithmetic operation
would produce an exact number that is too large for the
implementation to represent.

If the value of an expression is said to be “unspecified,”
then the expression must evaluate to some object without
signalling an error, but the value depends on the imple-
mentation; this report explicitly does not say what value
is returned.

Finally, the words and phrases “must,” “must not,”
“shall,” “shall not,” “should,” “should not,” “may,” “re-
quired,” “recommended,” and “optional,” although not
capitalized in this report, are to be interpreted as described
in RFC 2119 [6]. In particular, “must” and “must not” are
used only when absolute restrictions are placed on imple-
mentations.

1.3.3. Entry format

Chapters 4 and 6 are organized into entries. Each entry
describes one language feature or a group of related fea-
tures, where a feature is either a syntactic construct or a
procedure. An entry begins with one or more header lines
of the form

template category

for identifiers in the base library, or

template library category

where library is the short name of a library as defined in
Appendix A.

If category is “syntax,” the entry describes an expression
type, and the template gives the syntax of the expression
type. Components of expressions are designated by syn-
tactic variables, which are written using angle brackets, for
example, 〈expression〉, 〈variable〉. Syntactic variables are
intended to denote segments of program text; for example,
〈expression〉 stands for any string of characters which is a
syntactically valid expression. The notation

〈thing1〉 . . .

indicates zero or more occurrences of a 〈thing〉, and

〈thing1〉 〈thing2〉 . . .

indicates one or more occurrences of a 〈thing〉.

If category is “auxiliary syntax,” then the entry describes
a syntax binding that occurs only as part of specific sur-
rounding expressions. Any use as an independent syntactic
construct or identifier is an error.

If category is “procedure,” then the entry describes a pro-
cedure, and the header line gives a template for a call to the
procedure. Argument names in the template are italicized .
Thus the header line

(vector-ref vector k) procedure

indicates that the procedure bound to the vector-ref

variable takes two arguments, a vector vector and an exact
non-negative integer k (see below). The header lines

(make-vector k) procedure
(make-vector k fill) procedure

indicate that the make-vector procedure must be defined
to take either one or two arguments.

It is an error for an operation to be presented with an ar-
gument that it is not specified to handle. For succinctness,
we follow the convention that if an argument name is also
the name of a type listed in section 3.2, then it is an error if
that argument is not of the named type. For example, the
header line for vector-ref given above dictates that the
first argument to vector-ref is a vector. The following
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naming conventions also imply type restrictions:

obj any object
list, list1, . . . listj , . . . list (see section 6.4)
z, z1, . . . zj , . . . complex number
x, x1, . . . xj , . . . real number
y, y1, . . . yj , . . . real number
q, q1, . . . qj , . . . rational number
n, n1, . . . nj , . . . integer
k, k1, . . . kj , . . . exact non-negative integer
string string
pair pair
list list
alist association list (list of pairs)
symbol symbol
char character
letter alphabetic character
byte exact non-negative integer < 256
bytevector bytevector
proc procedure
thunk zero-argument procedure
port port

1.3.4. Evaluation examples

The symbol “=⇒” used in program examples is read “eval-
uates to.” For example,

(* 5 8) =⇒ 40

means that the expression (* 5 8) evaluates to the ob-
ject 40. Or, more precisely: the expression given by the
sequence of characters “(* 5 8)” evaluates, in the initial
environment, to an object that can be represented exter-
nally by the sequence of characters “40.” See section 3.3
for a discussion of external representations of objects.

1.3.5. Naming conventions

By convention, ? is the final character of the names of
procedures that always return a boolean value. Such pro-
cedures are called predicates.

Similarly, ! is the final character of the names of proce-
dures that store values into previously allocated locations
(see section 3.4). Such procedures are called mutation pro-
cedures. The value returned by a mutation procedure is
unspecified.

By convention, “->” appears within the names of proce-
dures that take an object of one type and return an anal-
ogous object of another type. For example, list->vector
takes a list and returns a vector whose elements are the
same as those of the list.

2. Lexical conventions

This section gives an informal account of some of the lexical
conventions used in writing Scheme programs. For a formal
syntax of Scheme, see section 7.1.

2.1. Identifiers

An identifier is any sequence of letters, digits, and “ex-
tended identifier characters” provided that it does not have
a prefix which is a valid number. However, the . token (a
single period) used in the list syntax is not an identifier.

All implementations of Scheme must support the following
extended identifier characters:

! $ % & * + - . / : < = > ? @ ^ _ ~

In addition, any character supported by an implementation
can be used within an identifier when specified using an
〈inline hex escape〉. For example, the identifier H\x65;llo
is the same as the identifier Hello, and in an implementa-
tion that supports the appropriate Unicode character the
identifier \x3BB; is the same as the identifier λ.

As a convenience, identifiers may also be written as a se-
quence of zero or more characters enclosed within vertical
bars (|), analogous to string literals. Any character, includ-
ing whitespace characters, but excluding the backslash and
vertical bar characters, may appear verbatim in such an
identifier. It is also possible to include the backslash and
vertical bar characters, as well as any other character, in
the identifier with an 〈inline hex escape〉. Thus the identi-
fier |foo bar| is the same as the identifier foo\x20;bar.
Note that || is a valid identifier that is not equal to any
other identifier.

Here are some examples of identifiers:

lambda q

list->vector +soup+

+ V17a

<=? a34kTMNs

->string ...

|two words| two\x20;words

the-word-recursion-has-many-meanings

See section 7.1.1 for the formal syntax of identifiers.

Identifiers have two uses within Scheme programs:

• Any identifier may be used as a variable or as a syn-
tactic keyword (see sections 3.1 and 4.3).

• When an identifier appears as a literal or within a
literal (see section 4.1.2), it is being used to denote a
symbol (see section 6.5).
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In contrast with earlier revisions of the report [2], the syn-
tax distinguishes between upper and lower case in identi-
fiers and in characters specified using their names. How-
ever, it does not distinguish between upper and lower case
in numbers, nor in 〈inline hex escapes〉 used in the syntax
of identifiers, characters, or strings. None of the identifiers
defined in this report contain upper-case characters, even
when they may appear to do so as a result of the English-
language convention of capitalizing the word at the begin-
ning of a sentence.

The following directives give explicit control over case fold-
ing.

#!fold-case

#!no-fold-case

These directives may appear anywhere comments are per-
mitted (see section 2.2) and are treated as comments,
except that they affect the reading of subsequent data.
The #!fold-case directive causes the read procedure to
case-fold (as if by string-foldcase; see section 6.7) each
identifier and character name subsequently read from the
same port. (It has no effect on character literals.) The
#!no-fold-case directive causes the read procedure to
return to the default, non-folding behavior.

2.2. Whitespace and comments

Whitespace characters include the space and newline char-
acters. (Implementations may provide additional whites-
pace characters such as tab or page break.) Whitespace is
used for improved readability and as necessary to separate
tokens from each other, a token being an indivisible lexi-
cal unit such as an identifier or number, but is otherwise
insignificant. Whitespace can occur between any two to-
kens, but not within a token. Whitespace occurring inside
a string or inside a symbol delimited by vertical bars is
significant.

The lexical syntax includes several comment forms. Com-
ments are treated exactly like whitespace.

A semicolon (;) indicates the start of a line comment. The
comment continues to the end of the line on which the
semicolon appears. Comments are invisible to Scheme, but
the end of the line is visible as whitespace. This prevents a
comment from appearing in the middle of an identifier or
number.

Another way to indicate a comment is to prefix a 〈datum〉
(cf. section 7.1.2) with #; and optional 〈whitespace〉. The
comment consists of the comment prefix #;, the space, and
the 〈datum〉 together. This notation is useful for “com-
menting out” sections of code.

Block comments are indicated with properly nested #| and
|# pairs.

#|

The FACT procedure computes the factorial

of a non-negative integer.

|#

(define fact

(lambda (n)

(if (= n 0)

#;(= n 1)

1 ;Base case: return 1

(* n (fact (- n 1))))))

2.3. Other notations

For a description of the notations used for numbers, see
section 6.2.

. + - These are used in numbers, and may also occur any-
where in an identifier. A delimited plus or minus sign
by itself is also an identifier. A delimited period (not
occurring within a number or identifier) is used in the
notation for pairs (section 6.4), and to indicate a rest-
parameter in a formal parameter list (section 4.1.4).
Note that a sequence of two or more periods is an
identifier.

( ) Parentheses are used for grouping and to notate lists
(section 6.4).

’ The single quote character is used to indicate literal data
(section 4.1.2).

` The backquote character is used to indicate partly con-
stant data (section 4.2.8).

, ,@ The character comma and the sequence comma at-
sign are used in conjunction with backquote (sec-
tion 4.2.8).

" The double quote character is used to delimit strings
(section 6.7).

\ Backslash is used in the syntax for character constants
(section 6.6) and as an escape character within string
constants (section 6.7) and identifiers (section 7.1.1).

[ ] { } Left and right square brackets and curly braces
are reserved for possible future extensions to the lan-
guage.

# Sharp sign is used for a variety of purposes depending
on the character that immediately follows it:

#t #f These are the boolean constants (section 6.3), along
with the alternatives #true and #false.

#\ This introduces a character constant (section 6.6).

#( This introduces a vector constant (section 6.8). Vector
constants are terminated by ) .
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#u8( This introduces a bytevector constant (section 6.9).
Bytevector constants are terminated by ) .

#e #i #b #o #d #x These are used in the notation for
numbers (section 6.2.5).

#〈n〉= #〈n〉# These are used for labeling and referencing
other literal data (section 2.4).

2.4. Datum labels

#〈n〉=〈datum〉 lexical syntax
#〈n〉# lexical syntax

The lexical syntax #〈n〉=〈datum〉 reads the same as
〈datum〉, but also results in 〈datum〉 being labelled by 〈n〉.
It is an error if 〈n〉 is not a sequence of digits.

The lexical syntax #〈n〉# serves as a reference to some ob-
ject labelled by #〈n〉=; the result is the same object as the
#〈n〉= as compared with eqv? (see section 6.1).

Together, these syntaxes permit the notation of structures
with shared or circular substructure.

(let ((x (list ’a ’b ’c)))

(set-cdr! (cddr x) x)

x) =⇒ #0=(a b c . #0#)

The scope of a datum label is the portion of the outermost
datum in which it appears that is to the right of the label.
Consequently, a reference #〈n〉# may occur only after a la-
bel #〈n〉=; it is an error to attempt a forward reference. In
addition, it is an error if the reference appears as the la-
belled object itself (as in #〈n〉= #〈n〉#), because the object
labelled by #〈n〉= is not well defined in this case.

It is an error for a 〈program〉 or 〈library〉 to include circular
references except in literals. In particular, it is an error for
quasiquote (section 4.2.8) to contain them.

#1=(begin (display #\x) . #1#)

=⇒ error

3. Basic concepts

3.1. Variables, syntactic keywords, and re-
gions

An identifier names either a type of syntax or a location
where a value can be stored. An identifier that names a
type of syntax is called a syntactic keyword and is said to be
bound to that syntax. An identifier that names a location
is called a variable and is said to be bound to that location.
The set of all visible bindings in effect at some point in
a program is known as the environment in effect at that
point. The value stored in the location to which a variable

is bound is called the variable’s value. By abuse of termi-
nology, the variable is sometimes said to name the value or
to be bound to the value. This is not quite accurate, but
confusion rarely results from this practice.

Certain expression types are used to create new kinds of
syntax and to bind syntactic keywords to those new syn-
taxes, while other expression types create new locations
and bind variables to those locations. These expression
types are called binding constructs. Those that bind syn-
tactic keywords are listed in section 4.3. The most fun-
damental of the variable binding constructs is the lambda

expression, because all other variable binding constructs
can be explained in terms of lambda expressions. The
other variable binding constructs are let, let*, letrec,
letrec*, let-values, let*-values, and do expressions
(see sections 4.1.4, 4.2.2, and 4.2.4).

Scheme is a language with block structure. To each place
where an identifier is bound in a program there corresponds
a region of the program text within which the binding is
visible. The region is determined by the particular bind-
ing construct that establishes the binding; if the binding is
established by a lambda expression, for example, then its
region is the entire lambda expression. Every mention of
an identifier refers to the binding of the identifier that es-
tablished the innermost of the regions containing the use.
If there is no binding of the identifier whose region con-
tains the use, then the use refers to the binding for the
variable in the top level environment, if any (chapters 4
and 6); if there is no binding for the identifier, it is said to
be unbound.

3.2. Disjointness of types

No object satisfies more than one of the following predi-
cates:

boolean? pair?

symbol? number?

char? string?

vector? bytevector?

port? procedure?

null?

These predicates define the types boolean, pair, symbol,
number, char (or character), string, vector, bytevector, port,
procedure, and the empty list object.

Although there is a separate boolean type, any Scheme
value can be used as a boolean value for the purpose of
a conditional test. As explained in section 6.3, all values
count as true in such a test except for #f. This report uses
the word “true” to refer to any Scheme value except #f,
and the word “false” to refer to #f.
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3.3. External representations

An important concept in Scheme (and Lisp) is that of the
external representation of an object as a sequence of char-
acters. For example, an external representation of the inte-
ger 28 is the sequence of characters “28,” and an external
representation of a list consisting of the integers 8 and 13
is the sequence of characters “(8 13).”

The external representation of an object is not neces-
sarily unique. The integer 28 also has representations
“#e28.000” and “#x1c,” and the list in the previous para-
graph also has the representations “( 08 13 )” and “(8
. (13 . ()))” (see section 6.4).

Many objects have standard external representations, but
some, such as procedures, do not have standard represen-
tations (although particular implementations may define
representations for them).

An external representation can be written in a program to
obtain the corresponding object (see quote, section 4.1.2).

External representations can also be used for input and
output. The procedure read (section 6.13.2) parses ex-
ternal representations, and the procedure write (sec-
tion 6.13.3) generates them. Together, they provide an
elegant and powerful input/output facility.

Note that the sequence of characters “(+ 2 6)” is not an
external representation of the integer 8, even though it is an
expression evaluating to the integer 8; rather, it is an exter-
nal representation of a three-element list, the elements of
which are the symbol + and the integers 2 and 6. Scheme’s
syntax has the property that any sequence of characters
that is an expression is also the external representation of
some object. This can lead to confusion, since it is not
always obvious out of context whether a given sequence of
characters is intended to denote data or program, but it is
also a source of power, since it facilitates writing programs
such as interpreters and compilers that treat programs as
data (or vice versa).

The syntax of external representations of various kinds of
objects accompanies the description of the primitives for
manipulating the objects in the appropriate sections of
chapter 6.

3.4. Storage model

Variables and objects such as pairs, vectors, and strings
implicitly denote locations or sequences of locations. A
string, for example, denotes as many locations as there are
characters in the string. A new value can be stored into
one of these locations using the string-set! procedure,
but the string continues to denote the same locations as
before.

An object fetched from a location, by a variable reference or
by a procedure such as car, vector-ref, or string-ref,
is equivalent in the sense of eqv? (section 6.1) to the object
last stored in the location before the fetch.

Every location is marked to show whether it is in use. No
variable or object ever refers to a location that is not in use.
Whenever this report speaks of storage being allocated for
a variable or object, what is meant is that an appropriate
number of locations are chosen from the set of locations
that are not in use, and the chosen locations are marked
to indicate that they are now in use before the variable or
object is made to denote them.

Every object that denotes locations is either mutable or
immutable. Literal constants, the strings returned by
symbol->string, and possibly the environment returned
by scheme-report-environment are immutable objects.
All objects created by the other procedures listed in this
report are mutable. It is an error to attempt to store a
new value into a location that is denoted by an immutable
object.

These locations should be understood as conceptual, not
physical. Hence, they do not necessarily correspond to
memory addresses, and even if they do, the memory ad-
dress may not be constant.

Rationale: In many systems it is desirable for constants (i.e.

the values of literal expressions) to reside in read-only memory.

Making it an error to alter constants permits this implementa-

tion strategy, while not requiring other systems to distinguish

between mutable and immutable objects.

3.5. Proper tail recursion

Implementations of Scheme are required to be properly tail-
recursive. Procedure calls that occur in certain syntactic
contexts defined below are tail calls. A Scheme imple-
mentation is properly tail-recursive if it supports an un-
bounded number of active tail calls. A call is active if
the called procedure might still return. Note that this in-
cludes calls that might be returned from either by the cur-
rent continuation or by continuations captured earlier by
call-with-current-continuation that are later invoked.
In the absence of captured continuations, calls could return
at most once and the active calls would be those that had
not yet returned. A formal definition of proper tail recur-
sion can be found in [12].

Rationale:

Intuitively, no space is needed for an active tail call because the
continuation that is used in the tail call has the same semantics
as the continuation passed to the procedure containing the call.
Although an improper implementation might use a new con-
tinuation in the call, a return to this new continuation would
be followed immediately by a return to the continuation passed
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to the procedure. A properly tail-recursive implementation re-
turns to that continuation directly.

Proper tail recursion was one of the central ideas in Steele and
Sussman’s original version of Scheme. Their first Scheme in-
terpreter implemented both functions and actors. Control flow
was expressed using actors, which differed from functions in
that they passed their results on to another actor instead of
returning to a caller. In the terminology of this section, each
actor finished with a tail call to another actor.

Steele and Sussman later observed that in their interpreter the
code for dealing with actors was identical to that for functions
and thus there was no need to include both in the language.

A tail call is a procedure call that occurs in a tail con-
text. Tail contexts are defined inductively. Note that a tail
context is always determined with respect to a particular
lambda expression.

• The last expression within the body of a lambda ex-
pression, shown as 〈tail expression〉 below, occurs in
a tail context. The same is true of all the bodies of
case-lambda expressions.

(lambda 〈formals〉
〈definition〉* 〈expression〉* 〈tail expression〉)

• If one of the following expressions is in a tail context,
then the subexpressions shown as 〈tail expression〉 are
in a tail context. These were derived from rules in the
grammar given in chapter 7 by replacing some occur-
rences of 〈body〉 with 〈tail body〉, some occurrences of
〈expression〉 with 〈tail expression〉, and some occur-
rences of 〈sequence〉 with 〈tail sequence〉. Only those
rules that contain tail contexts are shown here.

(if 〈expression〉 〈tail expression〉 〈tail expression〉)
(if 〈expression〉 〈tail expression〉)

(cond 〈cond clause〉+)
(cond 〈cond clause〉* (else 〈tail sequence〉))

(case 〈expression〉
〈case clause〉+)

(case 〈expression〉
〈case clause〉*
(else 〈tail sequence〉))

(and 〈expression〉* 〈tail expression〉)
(or 〈expression〉* 〈tail expression〉)

(when 〈test〉 〈tail sequence〉)
(unless 〈test〉 〈tail sequence〉)

(let (〈binding spec〉*) 〈tail body〉)
(let 〈variable〉 (〈binding spec〉*) 〈tail body〉)

(let* (〈binding spec〉*) 〈tail body〉)
(letrec (〈binding spec〉*) 〈tail body〉)
(letrec* (〈binding spec〉*) 〈tail body〉)
(let-values (〈formals〉*) 〈tail body〉)
(let*-values (〈formals〉*) 〈tail body〉)

(let-syntax (〈syntax spec〉*) 〈tail body〉)
(letrec-syntax (〈syntax spec〉*) 〈tail body〉)

(begin 〈tail sequence〉)

(do (〈iteration spec〉*)
(〈test〉 〈tail sequence〉)

〈expression〉*)

where

〈cond clause〉 −→ (〈test〉 〈tail sequence〉)
〈case clause〉 −→ ((〈datum〉*) 〈tail sequence〉)

〈tail body〉 −→ 〈definition〉* 〈tail sequence〉
〈tail sequence〉 −→ 〈expression〉* 〈tail expression〉

• If a cond or case expression is in a tail con-
text, and has a clause of the form (〈expression1〉 =>

〈expression2〉) then the (implied) call to the proce-
dure that results from the evaluation of 〈expression2〉
is in a tail context. 〈expression2〉 itself is not in a tail
context.

• Note that 〈cond clause〉s appear in guard expressions
as well as cond expressions.

Certain procedures defined in this report are also re-
quired to perform tail calls. The first argument passed
to apply and to call-with-current-continuation, and
the second argument passed to call-with-values, must
be called via a tail call. Similarly, eval must evaluate its
first argument as if it were in tail position within the eval

procedure.

In the following example the only tail call is the call to f.
None of the calls to g or h are tail calls. The reference to
x is in a tail context, but it is not a call and thus is not a
tail call.

(lambda ()

(if (g)

(let ((x (h)))

x)

(and (g) (f))))

Note: Implementations are allowed, but not required, to recog-

nize that some non-tail calls, such as the call to h above, can be

evaluated as though they were tail calls. In the example above,

the let expression could be compiled as a tail call to h. (The
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possibility of h returning an unexpected number of values can

be ignored, because in that case the effect of the let is explicitly

unspecified and implementation-dependent.)

4. Expressions

Expression types are categorized as primitive or derived.
Primitive expression types include variables and procedure
calls. Derived expression types are not semantically prim-
itive, but can instead be defined as macros. Suitable defi-
nitions of some of the derived expressions are given in sec-
tion 7.3.

The procedures force, eager, and make-parameter are
also described in this chapter because they are intimately
associated with the delay, lazy, and parameterize ex-
pression types.

4.1. Primitive expression types

4.1.1. Variable references

〈variable〉 syntax

An expression consisting of a variable (section 3.1) is a
variable reference. The value of the variable reference is
the value stored in the location to which the variable is
bound. It is an error to reference an unbound variable.

(define x 28)

x =⇒ 28

4.1.2. Literal expressions

(quote 〈datum〉) syntax
’〈datum〉 syntax
〈constant〉 syntax

(quote 〈datum〉) evaluates to 〈datum〉. 〈Datum〉 may be
any external representation of a Scheme object (see sec-
tion 3.3). This notation is used to include literal constants
in Scheme code.

(quote a) =⇒ a

(quote #(a b c)) =⇒ #(a b c)

(quote (+ 1 2)) =⇒ (+ 1 2)

(quote 〈datum〉) may be abbreviated as ’〈datum〉. The
two notations are equivalent in all respects.

’a =⇒ a

’#(a b c) =⇒ #(a b c)

’() =⇒ ()

’(+ 1 2) =⇒ (+ 1 2)

’(quote a) =⇒ (quote a)

’’a =⇒ (quote a)

Numerical constants, string constants, character constants,
bytevector constants, and boolean constants evaluate to
themselves; they need not be quoted.

’"abc" =⇒ "abc"

"abc" =⇒ "abc"

’145932 =⇒ 145932

145932 =⇒ 145932

’#t =⇒ #t

#t =⇒ #t

As noted in section 3.4, it is an error to alter a constant
(i.e. the value of a literal expression) using a mutation pro-
cedure like set-car! or string-set!.

4.1.3. Procedure calls

(〈operator〉 〈operand1〉 . . . ) syntax

A procedure call is written by simply enclosing in paren-
theses expressions for the procedure to be called and the
arguments to be passed to it. The operator and operand
expressions are evaluated (in an unspecified order) and the
resulting procedure is passed the resulting arguments.

(+ 3 4) =⇒ 7

((if #f + *) 3 4) =⇒ 12

A number of procedures are available as the values of vari-
ables in the initial environment; for example, the addition
and multiplication procedures in the above examples are
the values of the variables + and *. New procedures are cre-
ated by evaluating lambda expressions (see section 4.1.4).

Procedure calls may return any number of values (see
values in section 6.10). Most of the procedures defined
in this report return one value or, for procedures such as
apply, pass on the values returned by a call to one of their
arguments. Exceptions are noted in the individual descrip-
tions.

Note: In contrast to other dialects of Lisp, the order of

evaluation is unspecified, and the operator expression and the

operand expressions are always evaluated with the same evalu-

ation rules.

Note: Although the order of evaluation is otherwise unspeci-

fied, the effect of any concurrent evaluation of the operator and

operand expressions is constrained to be consistent with some

sequential order of evaluation. The order of evaluation may be

chosen differently for each procedure call.

Note: In many dialects of Lisp, the empty list, (), is a legiti-

mate expression evaluating to itself. In Scheme, it is an error.

4.1.4. Procedures

(lambda 〈formals〉 〈body〉) syntax

Syntax: 〈Formals〉 should be a formal arguments list as
described below, and 〈body〉 should be a sequence of one
or more expressions.
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Semantics: A lambda expression evaluates to a procedure.
The environment in effect when the lambda expression was
evaluated is remembered as part of the procedure. When
the procedure is later called with some actual arguments,
the environment in which the lambda expression was evalu-
ated will be extended by binding the variables in the formal
argument list to fresh locations, the corresponding actual
argument values will be stored in those locations, and the
body of the lambda expression will be evaluated in the ex-
tended environment. The results of the last expression in
the body will be returned as the results of the procedure
call.

(lambda (x) (+ x x)) =⇒ a procedure
((lambda (x) (+ x x)) 4) =⇒ 8

(define reverse-subtract

(lambda (x y) (- y x)))

(reverse-subtract 7 10) =⇒ 3

(define add4

(let ((x 4))

(lambda (y) (+ x y))))

(add4 6) =⇒ 10

〈Formals〉 should have one of the following forms:

• (〈variable1〉 . . . ): The procedure takes a fixed num-
ber of arguments; when the procedure is called, the
arguments will be stored in newly allocated locations
that are bound to the corresponding variables.

• 〈variable〉: The procedure takes any number of argu-
ments; when the procedure is called, the sequence of
actual arguments is converted into a newly allocated
list, and the list is stored in a newly allocated location
that is bound to 〈variable〉.

• (〈variable1〉 . . . 〈variablen〉 . 〈variablen+1〉): If a
space-delimited period precedes the last variable, then
the procedure takes n or more arguments, where n is
the number of formal arguments before the period (it
is an error if there is not at least one). The value stored
in the binding of the last variable will be a newly allo-
cated list of the actual arguments left over after all the
other actual arguments have been matched up against
the other formal arguments.

It is an error for a 〈variable〉 to appear more than once in
〈formals〉.

((lambda x x) 3 4 5 6) =⇒ (3 4 5 6)

((lambda (x y . z) z)

3 4 5 6) =⇒ (5 6)

4.1.5. Conditionals

(if 〈test〉 〈consequent〉 〈alternate〉) syntax
(if 〈test〉 〈consequent〉) syntax

Syntax: 〈Test〉, 〈consequent〉, and 〈alternate〉 should be
expressions.

Semantics: An if expression is evaluated as follows: first,
〈test〉 is evaluated. If it yields a true value (see section 6.3),
then 〈consequent〉 is evaluated and its values are returned.
Otherwise 〈alternate〉 is evaluated and its values are re-
turned. If 〈test〉 yields a false value and no 〈alternate〉 is
specified, then the result of the expression is unspecified.

(if (> 3 2) ’yes ’no) =⇒ yes

(if (> 2 3) ’yes ’no) =⇒ no

(if (> 3 2)

(- 3 2)

(+ 3 2)) =⇒ 1

4.1.6. Assignments

(set! 〈variable〉 〈expression〉) syntax

〈Expression〉 is evaluated, and the resulting value is stored
in the location to which 〈variable〉 is bound. It is an error
if 〈variable〉 is not bound either in some region enclosing
the set! expression or at top level. The result of the set!

expression is unspecified.

(define x 2)

(+ x 1) =⇒ 3

(set! x 4) =⇒ unspecified
(+ x 1) =⇒ 5

4.2. Derived expression types

The constructs in this section are hygienic, as discussed
in section 4.3. For reference purposes, section 7.3 gives
macro definitions that will convert most of the constructs
described in this section into the primitive constructs de-
scribed in the previous section.

4.2.1. Conditionals

(cond 〈clause1〉 〈clause2〉 . . . ) syntax
else auxiliary syntax
=> auxiliary syntax

Syntax: 〈Clauses〉 take one of two forms, either

(〈test〉 〈expression1〉 . . . )

where 〈test〉 is any expression, or

(〈test〉 => 〈expression〉)

The last 〈clause〉 may be an “else clause,” which has the
form
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(else 〈expression1〉 〈expression2〉 . . . ).

Semantics: A cond expression is evaluated by evaluating
the 〈test〉 expressions of successive 〈clause〉s in order until
one of them evaluates to a true value (see section 6.3).
When a 〈test〉 evaluates to a true value, then the remaining
〈expression〉s in its 〈clause〉 are evaluated in order, and the
results of the last 〈expression〉 in the 〈clause〉 are returned
as the results of the entire cond expression.

If the selected 〈clause〉 contains only the 〈test〉 and no
〈expression〉s, then the value of the 〈test〉 is returned as
the result. If the selected 〈clause〉 uses the => alternate
form, then the 〈expression〉 is evaluated. It is an error if
its value is not a procedure that accepts one argument.
This procedure is then called on the value of the 〈test〉 and
the values returned by this procedure are returned by the
cond expression.

If all 〈test〉s evaluate to #f, and there is no else clause,
then the result of the conditional expression is unspecified;
if there is an else clause, then its 〈expression〉s are evaluated
in order, and the values of the last one are returned.

(cond ((> 3 2) ’greater)

((< 3 2) ’less)) =⇒ greater

(cond ((> 3 3) ’greater)

((< 3 3) ’less)

(else ’equal)) =⇒ equal

(cond ((assv ’b ’((a 1) (b 2))) => cadr)

(else #f)) =⇒ 2

(case 〈key〉 〈clause1〉 〈clause2〉 . . . ) syntax

Syntax: 〈Key〉 may be any expression. Each 〈clause〉
should have the form

((〈datum1〉 . . . ) 〈expression1〉 〈expression2〉 . . . ),

where each 〈datum〉 is an external representation of some
object. It is an error if any of the 〈datum〉s are the same
anywhere in the expression. Alternatively, a 〈clause〉 may
be of the form

((〈datum1〉 . . . ) => 〈expression〉)

The last 〈clause〉 may be an “else clause,” which has one
of the forms

(else 〈expression1〉 〈expression2〉 . . . )

or

(else => 〈expression〉).

Semantics: A case expression is evaluated as follows.
〈Key〉 is evaluated and its result is compared against each
〈datum〉. If the result of evaluating 〈key〉 is equivalent (in
the sense of eqv?; see section 6.1) to a 〈datum〉, then the
expressions in the corresponding 〈clause〉 are evaluated in
order and the results of the last expression in the 〈clause〉
are returned as the results of the case expression.

If the result of evaluating 〈key〉 is different from every
〈datum〉, then if there is an else clause its expressions are
evaluated and the results of the last are the results of the
case expression; otherwise the result of the case expres-
sion is unspecified.

If the selected 〈clause〉 or else clause uses the => alternate
form, then the 〈expression〉 is evaluated. It is an error if
its value is not a procedure accepting one argument. This
procedure is then called on the value of the 〈key〉 and the
values returned by this procedure are returned by the case
expression.

(case (* 2 3)

((2 3 5 7) ’prime)

((1 4 6 8 9) ’composite)) =⇒ composite

(case (car ’(c d))

((a) ’a)

((b) ’b)) =⇒ unspecified
(case (car ’(c d))

((a e i o u) ’vowel)

((w y) ’semivowel)

(else => (lambda (x) x))) =⇒ c

(and 〈test1〉 . . . ) syntax

The 〈test〉 expressions are evaluated from left to right, and
if any expression evaluates to #f (see section 6.3), then #f

is returned. Any remaining expressions are not evaluated.
If all the expressions evaluate to true values, the value of
the last expression is returned. If there are no expressions
then #t is returned.

(and (= 2 2) (> 2 1)) =⇒ #t

(and (= 2 2) (< 2 1)) =⇒ #f

(and 1 2 ’c ’(f g)) =⇒ (f g)

(and) =⇒ #t

(or 〈test1〉 . . . ) syntax

The 〈test〉 expressions are evaluated from left to right, and
the value of the first expression that evaluates to a true
value (see section 6.3) is returned. Any remaining expres-
sions are not evaluated. If all expressions evaluate to #f or
if there are no expressions, #f is returned.

(or (= 2 2) (> 2 1)) =⇒ #t

(or (= 2 2) (< 2 1)) =⇒ #t

(or #f #f #f) =⇒ #f

(or (memq ’b ’(a b c))

(/ 3 0)) =⇒ (b c)

(when 〈test〉 〈expression1〉 〈expression2〉 . . . ) syntax

The 〈test〉 expression is evaluated, and if it evaluates to
a true value, the expressions are evaluated in order. The
result of the when expression is unspecified.

The following example outputs 12:
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(when (= 1 1.0)

(display "1")

(display "2") =⇒ unspecified

(unless 〈test〉 〈expression1〉 〈expression2〉 . . . ) syntax

The 〈test〉 expression is evaluated, and if it evaluates to #f,
the expressions are evaluated in order. The result of the
unless expression is unspecified.

The following example outputs nothing:

(unless (= 1 1.0)

(display "1")

(display "2") =⇒ unspecified

4.2.2. Binding constructs

The binding constructs let, let*, letrec, letrec*,
let-values, and let*-values give Scheme a block struc-
ture, like Algol 60. The syntax of the first four constructs
is identical, but they differ in the regions they establish
for their variable bindings. In a let expression, the initial
values are computed before any of the variables become
bound; in a let* expression, the bindings and evaluations
are performed sequentially; while in letrec and letrec*

expressions, all the bindings are in effect while their initial
values are being computed, thus allowing mutually recur-
sive definitions. The let-values and let*-values con-
structs are analogous to let and let* respectively, but
are designed to handle multiple-valued expressions, bind-
ing different identifiers to each returned value.

(let 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 should have the form

((〈variable1〉 〈init1〉) . . . ),

where each 〈init〉 is an expression, and 〈body〉 should be a
sequence of zero or more definitions followed by a sequence
of one or more expressions as described in section 4.1.4. It
is an error for a 〈variable〉 to appear more than once in the
list of variables being bound.

Semantics: The 〈init〉s are evaluated in the current envi-
ronment (in some unspecified order), the 〈variable〉s are
bound to fresh locations holding the results, the 〈body〉 is
evaluated in the extended environment, and the values of
the last expression of 〈body〉 are returned. Each binding
of a 〈variable〉 has 〈body〉 as its region.

(let ((x 2) (y 3))

(* x y)) =⇒ 6

(let ((x 2) (y 3))

(let ((x 7)

(z (+ x y)))

(* z x))) =⇒ 35

See also “named let,” section 4.2.4.

(let* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 should have the form

((〈variable1〉 〈init1〉) . . . ),

and 〈body〉 should be a sequence of zero or more defini-
tions followed by one or more expressions as described in
section 4.1.4.

Semantics: The let* binding construct is similar to let,
but the bindings are performed sequentially from left to
right, and the region of a binding indicated by (〈variable〉
〈init〉) is that part of the let* expression to the right of
the binding. Thus the second binding is done in an en-
vironment in which the first binding is visible, and so on.
The 〈variable〉s need not be distinct.

(let ((x 2) (y 3))

(let* ((x 7)

(z (+ x y)))

(* z x))) =⇒ 70

(letrec 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 should have the form

((〈variable1〉 〈init1〉) . . . ),

and 〈body〉 should be a sequence of zero or more defini-
tions followed by one or more expressions as described in
section 4.1.4. It is an error for a 〈variable〉 to appear more
than once in the list of variables being bound.

Semantics: The 〈variable〉s are bound to fresh locations
holding unspecified values, the 〈init〉s are evaluated in the
resulting environment (in some unspecified order), each
〈variable〉 is assigned to the result of the corresponding
〈init〉, the 〈body〉 is evaluated in the resulting environment,
and the values of the last expression in 〈body〉 are returned.
Each binding of a 〈variable〉 has the entire letrec expres-
sion as its region, making it possible to define mutually
recursive procedures.

(letrec ((even?

(lambda (n)

(if (zero? n)

#t

(odd? (- n 1)))))

(odd?

(lambda (n)

(if (zero? n)

#f

(even? (- n 1))))))

(even? 88))

=⇒ #t
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One restriction on letrec is very important: if it is not
possible to evaluate each 〈init〉 without assigning or refer-
ring to the value of any 〈variable〉, it is an error. The
restriction is necessary because letrec is defined in terms
of a procedure call where a lambda expression binds the
〈variable〉s to the values of the 〈init〉s. In the most com-
mon uses of letrec, all the 〈init〉s are lambda expressions
and the restriction is satisfied automatically. Another re-
striction is that the continuation of a 〈init〉 should not be
invoked more than once.

(letrec* 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 should have the form

((〈variable1〉 〈init1〉) . . . ),

and 〈body〉 should be a sequence of zero or more defini-
tions followed by one or more expressions as described in
section 4.1.4. It is an error for a 〈variable〉 to appear more
than once in the list of variables being bound.

Semantics: The 〈variable〉s are bound to fresh locations,
each 〈variable〉 is assigned in left-to-right order to the re-
sult of evaluating the corresponding 〈init〉, the 〈body〉 is
evaluated in the resulting environment, and the values of
the last expression in 〈body〉 are returned. Despite the left-
to-right evaluation and assignment order, each binding of a
〈variable〉 has the entire letrec* expression as its region,
making it possible to define mutually recursive procedures.

If it is not possible to evaluate each 〈init〉 without assigning
or referring to the value of the corresponding 〈variable〉
or the 〈variable〉 of any of the bindings that follow it in
〈bindings〉, it is an error.

(letrec* ((p

(lambda (x)

(+ 1 (q (- x 1)))))

(q

(lambda (y)

(if (zero? y)

0

(+ 1 (p (- y 1))))))

(x (p 5))

(y x))

y)

=⇒ 5

(let-values 〈mvbindings〉 〈body〉) syntax

Syntax: 〈Mvbindings〉 should have the form

((〈formals1〉 〈init1〉) . . . ),

where each 〈init〉 should be an expression, and 〈body〉
should be zero or more definitions followed by a sequence
of one or more expressions as described in section 4.1.4. It
is an error for a variable to appear more than once in the
set of 〈formals〉.

Semantics: The 〈init〉s are evaluated in the current en-
vironment (in some unspecified order) as if by invoking
call-with-values, and the variables occurring in the
〈formals〉 are bound to fresh locations holding the values
returned by the 〈init〉s, where the 〈formals〉 are matched
to the return values in the same way that the 〈formals〉
in a lambda expression are matched to the arguments in
a procedure call. Then, the 〈body〉 is evaluated in the ex-
tended environment, and the values of the last expression
of 〈body〉 are returned. Each binding of a 〈variable〉 has
〈body〉 as its region.

It is an error if the 〈formals〉 do not match the number of
values returned by the corresponding 〈init〉.

(let-values (((root rem) (exact-integer-sqrt 32)))

(* root rem) =⇒ 35

(let*-values 〈mvbindings〉 〈body〉) syntax

Syntax: 〈Mvbindings〉 should have the form

((〈formals〉 〈init〉) . . . ),

and 〈body〉 should be a sequence of zero or more defini-
tions followed by one or more expressions as described in
section 4.1.4. In each 〈formals〉, it is an error if any variable
appears more than once.

Semantics: The let-values* construct is similar to
let-values, but the 〈init〉s are evaluated and bindings cre-
ated sequentially from left to right, with the region of the
bindings of each 〈formals〉 including the 〈init〉s to its right
as well as 〈body〉. Thus the second 〈init〉 is evaluated in
an environment in which the first set of bindings is visible
and initialized, and so on.

(let ((a ’a) (b ’b) (x ’x) (y ’y))

(let*-values (((a b) (values x y))

((x y) (values a b)))

(list a b x y))) =⇒ (x y x y)

4.2.3. Sequencing

Both of Scheme’s sequencing constructs are named begin,
but the two have slightly different forms and uses:

(begin 〈expression or definition〉 . . . ) syntax

This form of begin may appear as part of a 〈body〉, or
at the 〈top-level〉, or directly nested in a begin that is
itself of this form. It causes the contained expressions and
definitions to be evaluated exactly as if the enclosing begin

construct were not present.

Rationale: This form is commonly used in the output of macros

(see section 4.3) which need to generate multiple definitions and

splice them into the context in which they are expanded.
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(begin 〈expression1〉 〈expression2〉 . . . ) syntax

This form of begin can be used as an ordinary expression.
The 〈expression〉s are evaluated sequentially from left to
right, and the values of the last 〈expression〉 are returned.
This expression type is used to sequence side effects such
as assignments or input and output.

(define x 0)

(and (= x 0)

(begin (set! x 5)

(+ x 1) =⇒ 6

(begin (display "4 plus 1 equals ")

(display (+ 4 1))) =⇒ unspecified
and prints 4 plus 1 equals 5

4.2.4. Iteration

(do ((〈variable1〉 〈init1〉 〈step1〉) syntax
. . . )

(〈test〉 〈expression〉 . . . )
〈command〉 . . . )

A do expression is an iteration construct. It specifies a set
of variables to be bound, how they are to be initialized at
the start, and how they are to be updated on each iteration.
When a termination condition is met, the loop exits after
evaluating the 〈expression〉s.
A do expression is evaluated as follows: The 〈init〉 ex-
pressions are evaluated (in some unspecified order), the
〈variable〉s are bound to fresh locations, the results of
the 〈init〉 expressions are stored in the bindings of the
〈variable〉s, and then the iteration phase begins.

Each iteration begins by evaluating 〈test〉; if the result is
false (see section 6.3), then the 〈command〉 expressions are
evaluated in order for effect, the 〈step〉 expressions are eval-
uated in some unspecified order, the 〈variable〉s are bound
to fresh locations, the results of the 〈step〉s are stored in the
bindings of the 〈variable〉s, and the next iteration begins.

If 〈test〉 evaluates to a true value, then the 〈expression〉s
are evaluated from left to right and the values of the last
〈expression〉 are returned. If no 〈expression〉s are present,
then the value of the do expression is unspecified.

The region of the binding of a 〈variable〉 consists of the
entire do expression except for the 〈init〉s. It is an error
for a 〈variable〉 to appear more than once in the list of do
variables.

A 〈step〉 may be omitted, in which case the effect is the
same as if (〈variable〉 〈init〉 〈variable〉) had been written
instead of (〈variable〉 〈init〉).

(do ((vec (make-vector 5))

(i 0 (+ i 1)))

((= i 5) vec)

(vector-set! vec i i)) =⇒ #(0 1 2 3 4)

(let ((x ’(1 3 5 7 9)))

(do ((x x (cdr x))

(sum 0 (+ sum (car x))))

((null? x) sum))) =⇒ 25

(let 〈variable〉 〈bindings〉 〈body〉) syntax

“Named let” is a variant on the syntax of let which pro-
vides a more general looping construct than do and can
also be used to express recursions. It has the same syn-
tax and semantics as ordinary let except that 〈variable〉
is bound within 〈body〉 to a procedure whose formal argu-
ments are the bound variables and whose body is 〈body〉.
Thus the execution of 〈body〉 can be repeated by invoking
the procedure named by 〈variable〉.

(let loop ((numbers ’(3 -2 1 6 -5))

(nonneg ’())

(neg ’()))

(cond ((null? numbers) (list nonneg neg))

((>= (car numbers) 0)

(loop (cdr numbers)

(cons (car numbers) nonneg)

neg))

((< (car numbers) 0)

(loop (cdr numbers)

nonneg

(cons (car numbers) neg)))))

=⇒ ((6 1 3) (-5 -2))

4.2.5. Delayed evaluation

(delay 〈expression〉) lazy library syntax

The delay construct is used together with the proce-
dure force to implement lazy evaluation or call by need.
(delay 〈expression〉) returns an object called a promise
which at some point in the future may be asked (by the
force procedure) to evaluate 〈expression〉, and deliver the
resulting value. The effect of 〈expression〉 returning mul-
tiple values is unspecified.

(lazy 〈expression〉) lazy library syntax

The lazy construct is similar to delay, but it is an error
for its argument not to evaluate to a promise. The returned
promise, when forced, will evaluate to whatever the original
promise would have evaluated to if it had been forced.

(force promise) lazy library procedure

The force procedure forces the value of a promise cre-
ated by delay or lazy. If no value has been computed for
the promise, then a value is computed and returned. The
value of the promise is cached (or “memoized”) so that if
it is forced a second time, the previously computed value
is returned.
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(force (delay (+ 1 2))) =⇒ 3

(let ((p (delay (+ 1 2))))

(list (force p) (force p)))

=⇒ (3 3)

(define integers

(letrec ((next

(lambda (n)

(delay (cons n (next (+ n 1)))))))

(next 0)))

(define head

(lambda (stream) (car (force stream))))

(define tail

(lambda (stream) (cdr (force stream))))

(head (tail (tail integers)))

=⇒ 2

The following example is a mechanical transformation of
a lazy stream-filtering algorithm into Scheme. Each call
to a constructor is wrapped in delay, and each argument
passed to a deconstructor is wrapped in force. The use
of (lazy ...) instead of (delay (force ...)) around
the body of the procedure ensures that an ever-growing
sequence of pending promises does not exhaust the heap.

(define (stream-filter p? s)

(lazy

(if (null? (force s))

(delay ’())

(let ((h (car (force s)))

(t (cdr (force s))))

(if (p? h)

(delay (cons h (stream-filter p? t)))

(stream-filter p? t))))))

(head (tail (tail (stream-filter odd? integers))))

=⇒ 5

The following examples are not intended to illustrate good
programming style, as delay, lazy, and force are mainly
intended for programs written in the functional style. How-
ever, they do illustrate the property that only one value is
computed for a promise, no matter how many times it is
forced.

(define count 0)

(define p

(delay (begin (set! count (+ count 1))

(if (> count x)

count

(force p)))))

(define x 5)

p =⇒ a promise
(force p) =⇒ 6

p =⇒ a promise, still
(begin (set! x 10)

(force p)) =⇒ 6

Various extensions to this semantics of delay, force and
lazy are supported in some implementations:

• Calling force on an object that is not a promise may
simply return the object.

• It may be the case that there is no means by which
a promise can be operationally distinguished from its
forced value. That is, expressions like the following
may evaluate to either #t or to #f, depending on the
implementation:

(eqv? (delay 1) 1) =⇒ unspecified
(pair? (delay (cons 1 2))) =⇒ unspecified

• Some implementations may implement “implicit forc-
ing,” where the value of a promise is forced by primi-
tive procedures like cdr and +:

(+ (delay (* 3 7)) 13) =⇒ 34

(eager obj) lazy library procedure

The eager procedure returns a promise which, when
forced, will return obj . It is similar to delay, but does
not delay its argument: it is a procedure rather than syn-
tax.

4.2.6. Dynamic bindings

(make-parameter init) procedure
(make-parameter init converter) procedure

Returns a newly allocated parameter object, which is a pro-
cedure that accepts zero arguments and returns the value
associated with the parameter object. Initially, this value is
the value of (converter init), or of init if the conversion
procedure converter is not specified. The associated value
can be temporarily changed using parameterize, which is
described below.

The effect of passing arguments to a parameter object is
implementation-dependent.

(parameterize ((〈param1〉 〈value1〉) . . . ) syntax
〈body〉)

A parameterize expression is used to change the values
returned by specified parameter objects during the evalua-
tion of the body. It is an error if the value of any 〈param〉
expression is not a parameter object. The 〈param〉 and
〈value〉 expressions are evaluated in an unspecified order.
The 〈body〉 is evaluated in a dynamic environment in which
calls to the parameters return the results of passing the
corresponding values to the conversion procedure specified
when the parameters were created. Then the previous val-
ues of the parameters are restored without passing them to
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the conversion procedure. The results of the last expres-
sion in the 〈body〉 are returned as the results of the entire
parameterize expression.

Note: If the conversion procedure is not idempotent, the results

of (parameterize ((x (x))) ...), which appears to bind the

parameter x to its current value, may not be what the user

expects.

If an implementation supports multiple threads of execu-
tion, then parameterize must not change the associated
values of any parameters in any thread other than the cur-
rent thread and threads created inside 〈body〉.
Parameter objects can be used to specify configurable set-
tings for a computation without the need to pass the value
to every procedure in the call chain explicitly.

(define radix

(make-parameter

10

(lambda (x)

(if (and (integer? x) (<= 2 x 16))

x

(error "invalid radix")))))

(define (f n) (number->string n (radix)))

(f 12) =⇒ "12"

(parameterize ((radix 2))

(f 12)) =⇒ "1100"

(f 12) =⇒ "12"

(radix 16) =⇒ unspecified

(parameterize ((radix 0))

(f 12)) =⇒ error

4.2.7. Exception Handling

(guard (〈variable〉 syntax
〈cond clause1〉 〈cond clause2〉 . . . )

〈body〉)
Syntax: Each 〈cond clause〉 is as in the specification of
cond.

Semantics: The 〈body〉 is evaluated with an exception
handler that binds the raised object to 〈variable〉 and,
within the scope of that binding, evaluates the clauses as
if they were the clauses of a cond expression. That im-
plicit cond expression is evaluated with the continuation
and dynamic environment of the guard expression. If ev-
ery 〈cond clause〉’s 〈test〉 evaluates to #f and there is no
else clause, then raise-continuable is re-invoked on the
raised object within the dynamic environment of the origi-
nal call to raise except that the current exception handler
is that of the guard expression.

See section 6.11 for a more complete discussion of excep-
tions.

4.2.8. Quasiquotation

(quasiquote 〈qq template〉) syntax
`〈qq template〉 syntax
unquote auxiliary syntax
unquote-splicing auxiliary syntax

“Backquote” or “quasiquote” expressions are useful for
constructing a list or vector structure when some but not
all of the desired structure is known in advance. If no
commas appear within the 〈qq template〉, the result of
evaluating `〈qq template〉 is equivalent to the result of
evaluating ’〈qq template〉. If a comma appears within
the 〈qq template〉, however, the expression following the
comma is evaluated (“unquoted”) and its result is inserted
into the structure instead of the comma and the expression.
If a comma appears followed immediately by an at-sign (@),
then it is an error if the following expression does not eval-
uate to a list; the opening and closing parentheses of the
list are then “stripped away” and the elements of the list
are inserted in place of the comma at-sign expression se-
quence. A comma at-sign should only appear within a list
or vector 〈qq template〉.

`(list ,(+ 1 2) 4) =⇒ (list 3 4)

(let ((name ’a)) `(list ,name ’,name))

=⇒ (list a (quote a))

`(a ,(+ 1 2) ,@(map abs ’(4 -5 6)) b)

=⇒ (a 3 4 5 6 b)

`(( foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(cons)))

=⇒ ((foo 7) . cons)

`#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)

=⇒ #(10 5 2 4 3 8)

Quasiquote expressions may be nested. Substitutions are
made only for unquoted components appearing at the same
nesting level as the outermost backquote. The nesting level
increases by one inside each successive quasiquotation, and
decreases by one inside each unquotation.

`(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)

=⇒ (a `(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 ’x)

(name2 ’y))

`(a `(b ,,name1 ,’,name2 d) e))

=⇒ (a `(b ,x ,’y d) e)

A quasiquote expression may return either fresh, mutable
objects or literal structure for any structure that is con-
structed at run time during the evaluation of the expres-
sion. Portions that do not need to be rebuilt are always
literal. Thus,

(let ((a 3)) `((1 2) ,a ,4 ,’five 6))

may be equivalent to either of the following expressions:

`((1 2) 3 4 five 6)
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(let ((a 3))

(cons ’(1 2)

(cons a (cons 4 (cons ’five ’(6))))))

However, it is not equivalent to this expression:

(let ((a 3)) (list (list 1 2) a 4 ’five 6))

The two notations `〈qq template〉 and (quasiquote

〈qq template〉) are identical in all respects. ,〈expression〉
is identical to (unquote 〈expression〉), and ,@〈expression〉
is identical to (unquote-splicing 〈expression〉). The ex-
ternal syntax generated by write for two-element lists
whose car is one of these symbols may vary between im-
plementations.

(quasiquote (list (unquote (+ 1 2)) 4))

=⇒ (list 3 4)

’(quasiquote (list (unquote (+ 1 2)) 4))

=⇒ `(list ,(+ 1 2) 4)

i.e., (quasiquote (list (unquote (+ 1 2)) 4))

It is an error if any of the identifiers quasiquote,
unquote, or unquote-splicing appear in positions within
a 〈qq template〉 otherwise than as described above.

4.2.9. Case-lambda

(case-lambda 〈clause1〉 〈clause2〉 . . . )
case-lambda library syntax

Syntax: Each 〈clause〉 should be of the form (〈formals〉
〈body〉), where 〈formals〉 and 〈body〉 have the same syntax
as in a lambda expression.

Semantics: A case-lambda expression evaluates to a pro-
cedure that accepts a variable number of arguments and
is lexically scoped in the same manner as a procedure re-
sulting from a lambda expression. When the procedure
is called, the first 〈clause〉 for which the arguments agree
with 〈formals〉 is selected, where agreement is specified as
for the 〈formals〉 of a lambda expression. The variables
of 〈formals〉 are bound to fresh locations, the values of
the arguments are stored in those locations, the 〈body〉
is evaluated in the extended environment, and the results
of 〈body〉 are returned as the results of the procedure call.

It is an error for the arguments not to agree with the
〈formals〉 of any 〈clause〉.

(define range

(case-lambda

((e) (range 0 e))

((b e) (do ((r ’() (cons e r))

(e (- e 1) (- e 1)))

((< e b) r)))))

(range 3) =⇒ (0 1 2)

(range 3 5) =⇒ (3 4)

4.3. Macros

Scheme programs can define and use new derived expres-
sion types, called macros. Program-defined expression
types have the syntax

(〈keyword〉 〈datum〉 ...)

where 〈keyword〉 is an identifier that uniquely determines
the expression type. This identifier is called the syntactic
keyword, or simply keyword, of the macro. The number of
the 〈datum〉s, and their syntax, depends on the expression
type.

Each instance of a macro is called a use of the macro. The
set of rules that specifies how a use of a macro is transcribed
into a more primitive expression is called the transformer
of the macro.

The macro definition facility consists of two parts:

• A set of expressions used to establish that certain iden-
tifiers are macro keywords, associate them with macro
transformers, and control the scope within which a
macro is defined, and

• a pattern language for specifying macro transformers.

The syntactic keyword of a macro may shadow variable
bindings, and local variable bindings may shadow keyword
bindings:

• If a macro transformer inserts a binding for an identi-
fier (variable or keyword), the identifier will in effect be
renamed throughout its scope to avoid conflicts with
other identifiers. Note that a define at top level may
or may not introduce a binding; see section 5.2.

• If a macro transformer inserts a free reference to an
identifier, the reference refers to the binding that was
visible where the transformer was specified, regard-
less of any local bindings that surround the use of the
macro.

In consequence, all macros defined using the pattern lan-
guage are “hygienic” and “referentially transparent” and
thus preserve Scheme’s lexical scoping. [21, 22, 4, 11, 15]

4.3.1. Binding constructs for syntactic keywords

The let-syntax and letrec-syntax binding constructs
are analogous to let and letrec, but they bind syn-
tactic keywords to macro transformers instead of binding
variables to locations that contain values. Syntactic key-
words may also be bound at top level or elsewhere with
define-syntax; see section 5.3.

(let-syntax 〈bindings〉 〈body〉) syntax

Syntax: 〈Bindings〉 should have the form
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((〈keyword〉 〈transformer spec〉) . . . )

Each 〈keyword〉 is an identifier, each 〈transformer spec〉
is an instance of syntax-rules, and 〈body〉 should be a
sequence of one or more definitions followed by one or more
expressions. It is an error for a 〈keyword〉 to appear more
than once in the list of keywords being bound.

Semantics: The 〈body〉 is expanded in the syntactic envi-
ronment obtained by extending the syntactic environment
of the let-syntax expression with macros whose keywords
are the 〈keyword〉s, bound to the specified transformers.
Each binding of a 〈keyword〉 has 〈body〉 as its region.

(let-syntax ((when (syntax-rules ()

((when test stmt1 stmt2 ...)

(if test

(begin stmt1

stmt2 ...))))))

(let ((if #t))

(when if (set! if ’now))

if)) =⇒ now

(let ((x ’outer))

(let-syntax ((m (syntax-rules () ((m) x))))

(let ((x ’inner))

(m)))) =⇒ outer

(letrec-syntax 〈bindings〉 〈body〉) syntax

Syntax: Same as for let-syntax.

Semantics: The 〈body〉 is expanded in the syntactic
environment obtained by extending the syntactic envi-
ronment of the letrec-syntax expression with macros
whose keywords are the 〈keyword〉s, bound to the speci-
fied transformers. Each binding of a 〈keyword〉 has the
〈transformer spec〉s as well as the 〈body〉 within its region,
so the transformers can transcribe expressions into uses of
the macros introduced by the letrec-syntax expression.

(letrec-syntax

((my-or (syntax-rules ()

((my-or) #f)

((my-or e) e)

((my-or e1 e2 ...)

(let ((temp e1))

(if temp

temp

(my-or e2 ...)))))))

(let ((x #f)

(y 7)

(temp 8)

(let odd?)

(if even?))

(my-or x

(let temp)

(if y)

y))) =⇒ 7

4.3.2. Pattern language

A 〈transformer spec〉 has one of the following forms:

(syntax-rules (〈literal〉 . . . ) syntax
〈syntax rule〉 . . . )

(syntax-rules 〈ellipsis〉 (〈literal〉 . . . ) syntax
〈syntax rule〉 . . . )

auxiliary syntax
. . . auxiliary syntax

Syntax: It is an error if any of the 〈literal〉s, or the 〈ellipsis〉
in the second form, is not an identifier. It is also an error
if 〈syntax rule〉 is not of the form

(〈pattern〉 〈template〉)

The 〈pattern〉 in a 〈syntax rule〉 is a list 〈pattern〉 whose
first element is an identifier.

A 〈pattern〉 is either an identifier, a constant, or one of the
following

(〈pattern〉 ...)

(〈pattern〉 〈pattern〉 ... . 〈pattern〉)
(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...

. 〈pattern〉)
#(〈pattern〉 ...)

#(〈pattern〉 ... 〈pattern〉 〈ellipsis〉 〈pattern〉 ...)

and a template is either an identifier, a constant, or one of
the following

(〈element〉 ...)

(〈element〉 〈element〉 ... . 〈template〉)
(〈ellipsis〉 〈template〉)
#(〈element〉 ...)

where an 〈element〉 is a 〈template〉 optionally followed by
an 〈ellipsis〉. An 〈ellipsis〉 is the identifier specified in the
second form of syntax-rules, or the default identifier ...
(three consecutive periods) otherwise.

Semantics: An instance of syntax-rules produces a new
macro transformer by specifying a sequence of hygienic
rewrite rules. A use of a macro whose keyword is associated
with a transformer specified by syntax-rules is matched
against the patterns contained in the 〈syntax rule〉s, be-
ginning with the leftmost 〈syntax rule〉. When a match is
found, the macro use is transcribed hygienically according
to the template.

An identifier appearing within a 〈pattern〉 may be an un-
derscore ( ), a literal identifier listed in the list of 〈literal〉s,
or the 〈ellipsis〉. All other identifiers appearing within a
〈pattern〉 are pattern variables.

The keyword at the beginning of the pattern in a
〈syntax rule〉 is not involved in the matching and is con-
sidered neither a pattern variable nor a literal identifier.

Pattern variables match arbitrary input elements and are
used to refer to elements of the input in the template. It
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is an error for the same pattern variable to appear more
than once in a 〈pattern〉.
Underscores also match arbitrary input elements but are
not pattern variables and so cannot be used to refer to
those elements. If an underscore appears in the 〈literal〉s
list, then that takes precedence and underscores in the
〈pattern〉 match as literals. Multiple underscores may ap-
pear in a 〈pattern〉.
Identifiers that appear in (〈literal〉 . . . ) are interpreted as
literal identifiers to be matched against corresponding el-
ements of the input. An element in the input matches
a literal identifier if and only if it is an identifier and ei-
ther both its occurrence in the macro expression and its
occurrence in the macro definition have the same lexical
binding, or the two identifiers are equal and both have no
lexical binding.

A subpattern followed by 〈ellipsis〉 can match zero or
more elements of the input, unless 〈ellipsis〉 appears in the
〈literal〉s, in which case it is matched as a literal.

More formally, an input expression E matches a pattern P
if and only if:

• P is an underscore ( ).

• P is a non-literal identifier; or

• P is a literal identifier and E is an identifier with the
same binding; or

• P is a list (P1 . . . Pn) and E is a list of n elements
that match P1 through Pn, respectively; or

• P is an improper list (P1 P2 . . . Pn . Pn+1) and
E is a list or improper list of n or more elements that
match P1 through Pn, respectively, and whose nth tail
matches Pn+1; or

• P is of the form (P1 . . . Pe−1 Pe 〈ellipsis〉 Pm+1

. . . Pn) where E is a proper list of n elements, the first
e − 1 of which match P1 through Pe−1, respectively,
whose next m− k elements each match Pe, whose re-
maining n−m elements match Pm+1 through Pn; or

• P is of the form (P1 . . . Pe−1 Pe 〈ellipsis〉 Pm+1

. . . Pn . Px) where E is an list or improper list of
n elements, the first e− 1 of which match P1 through
Pe−1, whose next m−k elements each match Pe, whose
remaining n − m elements match Pm+1 through Pn,
and whose nth and final cdr matches Px; or

• P is a vector of the form #(P1 . . . Pn) and E is a
vector of n elements that match P1 through Pn; or

• P is of the form #(P1 . . . Pe−1 Pe 〈ellipsis〉 Pm+1

. . . Pn) where E is a vector of n elements the first
e − 1 of which match P1 through Pe−1, whose next
m− k elements each match Pe, and whose remaining
n−m elements match Pm+1 through Pn; or

• P is a constant and E is equal to P in the sense of the
equal? procedure.

It is an error to use a macro keyword, within the scope of
its binding, in an expression that does not match any of
the patterns.

When a macro use is transcribed according to the template
of the matching 〈syntax rule〉, pattern variables that occur
in the template are replaced by the elements they match in
the input. Pattern variables that occur in subpatterns fol-
lowed by one or more instances of the identifier 〈ellipsis〉 are
allowed only in subtemplates that are followed by as many
instances of 〈ellipsis〉. They are replaced in the output by
all of the elements they match in the input, distributed as
indicated. It is an error if the output cannot be built up
as specified.

Identifiers that appear in the template but are not pattern
variables or the identifier 〈ellipsis〉 are inserted into the out-
put as literal identifiers. If a literal identifier is inserted as a
free identifier then it refers to the binding of that identifier
within whose scope the instance of syntax-rules appears.
If a literal identifier is inserted as a bound identifier then
it is in effect renamed to prevent inadvertent captures of
free identifiers.

A template of the form (〈ellipsis〉 〈template〉) is identical
to 〈template〉, except that ellipses within the template have
no special meaning. That is, any ellipses contained within
〈template〉 are treated as ordinary identifiers. In partic-
ular, the template (〈ellipsis〉 〈ellipsis〉) produces a single
〈ellipsis〉. This allows syntactic abstractions to expand into
code containing ellipses.

(define-syntax be-like-begin

(syntax-rules ()

((be-like-begin name)

(define-syntax name

(syntax-rules ()

((name expr (... ...))

(begin expr (... ...))))))))

(be-like-begin sequence)

(sequence 1 2 3 4) =⇒ 4

As an example, if let and cond are defined as in section 7.3
then they are hygienic (as required) and the following is not
an error.

(let ((=> #f))

(cond (#t => ’ok))) =⇒ ok

The macro transformer for cond recognizes => as a local
variable, and hence an expression, and not as the top-level
identifier =>, which the macro transformer treats as a syn-
tactic keyword. Thus the example expands into

(let ((=> #f))

(if #t (begin => ’ok)))
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instead of

(let ((=> #f))

(let ((temp #t))

(if temp (’ok temp))))

which would result in an invalid procedure call.

4.3.3. Signalling errors in macro transformers

(syntax-error 〈message〉 〈args〉 . . . ) syntax

syntax-error behaves similarly to error (6.11) except
that implementations with an expansion pass separate from
evaluation should signal an error as soon as syntax-error
is expanded. This can be used as a syntax-rules

〈template〉 for a 〈pattern〉 that is an invalid use of the
macro, which can provide more descriptive error messages.
〈message〉 should be a string literal, and 〈args〉 arbitrary
expressions providing additional information. Applications
cannot count on being able to catch syntax errors with ex-
ception handlers or guards.

(define-syntax simple-let

(syntax-rules ()

(( (head ... ((x . y) val) . tail)

body1 body2 ...)

(syntax-error

"expected an identifier but got"

(x . y)))

(( ((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...)

val ...))))

5. Program structure

5.1. Programs

A Scheme program consists of a sequence of program parts:
expressions, definitions, syntax definitions, record type def-
initions, imports, cond-expands, and includes. A collec-
tion of program parts may be encapsulated in a library to
be reused by multiple programs. Expressions are described
in chapter 4; the other program parts, as well as libraries,
are the subject of the present chapter.

Programs and libraries are typically stored in files, al-
though programs can be entered interactively to a running
Scheme system, and other paradigms are possible. Imple-
mentations which store libraries in files should document
the mapping from the name of a library to its location in
the file system.

Program parts other than expressions that are present at
the top level of a program can be interpreted declaratively.
They cause bindings to be created in the top level envi-
ronment or modify the value of existing top-level bindings.
The initial (or “top level”) Scheme environment is empty
except for import, so further bindings can only be intro-
duced with import.

Expressions occurring at the top level of a program are
interpreted imperatively; they are executed in order when
the program is invoked or loaded, and typically perform
some kind of initialization.

At the top level of a program (begin 〈form1〉 . . . ) is
equivalent to the sequence of expressions, definitions, and
syntax definitions in the begin. Macros can expand into
such begins.

Implementations may provide an interactive session called
a REPL (Read-Eval-Print Loop), where Scheme program
parts can be entered and evaluated one at a time. For con-
venience and ease of use, the “top-level” Scheme environ-
ment in a REPL must not be not empty, but must start out
with variables bound to locations containing at least the
bindings provided by the base library. This library includes
the core syntax of Scheme and generally useful procedures
that manipulate data. For example, the variable abs is
bound to a procedure of one argument that computes the
absolute value of a number, and the variable + is bound to
a procedure that computes sums. The full list of (scheme
base) bindings can be found in Appendix A.

5.2. Definitions

Definitions are valid in some, but not all, contexts where
expressions are allowed. They are valid only at the top
level of a 〈program〉 and at the beginning of a 〈body〉.
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In a 〈body〉 (begin 〈definition1〉 . . . ) is equivalent to the
sequence of definitions 〈definition1〉 . . . . Macros can ex-
pand into such begins.

A definition takes one of the following forms:

• (define 〈variable〉 〈expression〉)

• (define (〈variable〉 〈formals〉) 〈body〉)

〈Formals〉 should be either a sequence of zero or more
variables, or a sequence of one or more variables fol-
lowed by a space-delimited period and another vari-
able (as in a lambda expression). This form is equiv-
alent to

(define 〈variable〉
(lambda (〈formals〉) 〈body〉)).

• (define (〈variable〉 . 〈formal〉) 〈body〉)

〈Formal〉 should be a single variable. This form is
equivalent to

(define 〈variable〉
(lambda 〈formal〉 〈body〉)).

5.2.1. Top level definitions

At the top level of a program, a definition

(define 〈variable〉 〈expression〉)

has essentially the same effect as the assignment expres-
sion

(set! 〈variable〉 〈expression〉)

if 〈variable〉 is bound to a non-syntax value. However, if
〈variable〉 is not bound, or is bound to a syntax definition
(see below), then the definition will bind 〈variable〉 to a
new location before performing the assignment, whereas
it would be an error to perform a set! on an unbound
variable.

(define add3

(lambda (x) (+ x 3)))

(add3 3) =⇒ 6

(define first car)

(first ’(1 2)) =⇒ 1

Implementations are permitted to provide an initial envi-
ronment in which all possible variables are bound to loca-
tions, most of which contain unspecified values. Top level
definitions in such an implementation are truly equivalent
to assignments.

5.2.2. Internal definitions

Definitions may occur at the beginning of a 〈body〉 (that
is, the body of a lambda, let, let*, letrec, letrec*,
let-values, let-values*, let-syntax, letrec-syntax,
parameterize, guard, or case-lambda expression or that
of a definition of an appropriate form). Such definitions are
known as internal definitions as opposed to the top-level
definitions described above. The variable defined by an
internal definition is local to the 〈body〉. That is, 〈variable〉
is bound rather than assigned, and the region of the binding
is the entire 〈body〉. For example,

(let ((x 5))

(define foo (lambda (y) (bar x y)))

(define bar (lambda (a b) (+ (* a b) a)))

(foo (+ x 3))) =⇒ 45

An expanded 〈body〉 containing internal definitions can al-
ways be converted into a completely equivalent letrec*

expression. For example, the let expression in the above
example is equivalent to

(let ((x 5))

(letrec* ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))

(foo (+ x 3))))

Just as for the equivalent letrec* expression, it is an er-
ror if it is not possible to evaluate each 〈expression〉 of
every internal definition in a 〈body〉 without assigning or
referring to the value of the corresponding 〈variable〉 or the
〈variable〉 of any of the definitions that follow it in 〈body〉.
It is an error to define the same identifier more than once
in the same 〈body〉.
Wherever an internal definition may occur, (begin

〈definition1〉 . . . ) is equivalent to the sequence of defini-
tions that form the body of the begin.

5.2.3. Multiple-value definitions

The construct define-values introduces new definitions
like define, but can create multiple definitions from a sin-
gle expression returning multiple values. It is allowed wher-
ever define is allowed.

(define-values 〈formals〉 〈expression〉) syntax

It is an error if a variable appears more than once in the
set of 〈formals〉.
Semantics: 〈Expression〉 is evaluated, and the 〈formals〉
are bound to the return values in the same way that the
〈formals〉 in a lambda expression are matched to the argu-
ments in a procedure call.

(let ()

(define-values (x y) (values 1 2))

(+ x y)) =⇒ 3
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5.3. Syntax definitions

Syntax definitions are valid wherever definitions are. They
have the following form:

(define-syntax 〈keyword〉 〈transformer spec〉)
〈Keyword〉 is an identifier, and the 〈transformer spec〉
should be an instance of syntax-rules. If the
define-syntax occurs at the top level, then the top-
level syntactic environment is extended by binding the
〈keyword〉 to the specified transformer, but existing ref-
erences to any top-level binding for 〈keyword〉 remain un-
changed. Otherwise, it is an internal syntax definition, and
is local to the 〈body〉 in which it is defined.

(let ((x 1) (y 2))

(define-syntax swap!

(syntax-rules ()

((swap! a b)

(let ((tmp a))

(set! a b)

(set! b tmp)))))

(swap! x y)

(list x y)) =⇒ (2 1)

Macros can expand into definitions in any context that
permits them. However, it is an error for a definition to
define an identifier whose binding has to be known in or-
der to determine the meaning of the definition itself, or of
any preceding definition that belongs to the same group
of internal definitions. Similarly, it is an error for an in-
ternal definition to define an identifier whose binding has
to be known in order to determine the boundary between
the internal definitions and the expressions of the body it
belongs to. For example, the following are errors:

(define define 3)

(begin (define begin list))

(let-syntax

((foo (syntax-rules ()

((foo (proc args ...) body ...)

(define proc

(lambda (args ...)

body ...))))))

(let ((x 3))

(foo (plus x y) (+ x y))

(define foo x)

(plus foo x)))

5.4. Record type definitions

Record type definitions are used to introduce new data
types, called record types. The values of a record type are
called records and are aggregations of zero or more fields,
each of which holds a single location. A predicate, a con-
structor, and field accessors and mutators are defined for

each record type. Record type definitions are valid wher-
ever definitions are.

(define-record-type 〈name〉 syntax
〈constructor〉 〈pred〉 〈field〉 . . . )

Syntax: 〈name〉 and 〈pred〉 should be identifiers. The
〈constructor〉 should be of the form

(〈constructor name〉 〈field name〉 . . . )

and each 〈field〉 should be either of the form

(〈field name〉 〈accessor name〉)

or of the form

(〈field name〉 〈accessor name〉 〈modifier name〉)

It is an error for the same identifier to occur more than
once as a field name.

define-record-type is generative: each use creates a new
record type that is distinct from all existing types, includ-
ing Scheme’s predefined types and other record types —
even record types of the same name or structure.

An instance of define-record-type is equivalent to the
following definitions:

• 〈name〉 is bound to a representation of the record type
itself. This may be a run-time object or a purely syn-
tactic representation.

• 〈constructor name〉 is bound to a procedure that takes
as many arguments as there are 〈field name〉s in the
(〈constructor name〉 . . . ) subexpression and returns
a new record of type 〈name〉. Fields whose names are
listed with 〈constructor name〉 have the corresponding
argument as their initial value. The initial values of
all other fields are unspecified. It is an error for a
field name to appear in 〈constructor〉 but not as a
〈field name〉.

• 〈pred〉 is bound to a predicate that returns #t when
given a value returned by the procedure bound to
〈constructor name〉 and #f for everything else.

• Each 〈accessor name〉 is bound to a procedure that
takes a record of type 〈name〉 and returns the cur-
rent value of the corresponding field. It is an error to
pass an accessor a value which is not a record of the
appropriate type.

• Each 〈modifier name〉 is bound to a procedure that
takes a record of type 〈name〉 and a value which be-
comes the new value of the corresponding field; an
unspecified value is returned. It is an error to pass a
modifier a first argument which is not a record of the
appropriate type.

For instance, the following definition
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(define-record-type <pare>

(kons x y)

pare?

(x kar set-kar!)

(y kdr))

defines kons to be a constructor, kar and kdr to be ac-
cessors, set-kar! to be a modifier, and pare? to be a
predicate for instances of <pare>.

(pare? (kons 1 2)) =⇒ #t

(pare? (cons 1 2)) =⇒ #f

(kar (kons 1 2)) =⇒ 1

(kdr (kons 1 2)) =⇒ 2

(let ((k (kons 1 2)))

(set-kar! k 3)

(kar k)) =⇒ 3

5.5. Libraries

Libraries provide a way to organize Scheme programs into
reusable parts with explicitly defined interfaces to the rest
of the program. This section defines the notation and se-
mantics for libraries.

5.5.1. Library Syntax

A library definition takes the following form:

(define-library 〈library name〉
〈library declaration〉 . . . )

〈library name〉 is a list whose members are identifiers and
unsigned exact integers. It is used to identify the library
uniquely when importing from other programs or libraries.
Libraries whose first identifier is scheme are reserved for use
by this report and future versions of this report. Libraries
whose first identifier is srfi are reserved for libraries im-
plementing Scheme Requests for Implementation.

A 〈library declaration〉 may be any of:

• (export 〈export spec〉 . . . )

• (import 〈import set〉 . . . )

• (begin 〈command or definition〉 . . . )

• (include 〈filename1〉 〈filename2〉 . . . )

• (include-ci 〈filename1〉 〈filename2〉 . . . )

• (cond-expand 〈cond-expand clause〉 . . . )

An export declaration specifies a list of identifiers which
can be made visible to other libraries or programs. An
〈export spec〉 takes one of the following forms:

• 〈identifier〉

• (rename 〈identifier1〉 〈identifier2〉)

In an 〈export spec〉, an 〈identifier〉 names a single bind-
ing defined within or imported into the library, where the
external name for the export is the same as the name
of the binding within the library. A rename spec ex-
ports the binding defined within or imported into the li-
brary and named by 〈identifier1〉 in each (〈identifier1〉
〈identifier2〉) pairing, using 〈identifier2〉 as the external
name.

An import declaration provides a way to import the iden-
tifiers exported by a library. Each 〈import set〉 names a
set of bindings from another library and possibly specifies
local names for the imported bindings. It takes one of the
following forms:

• 〈library name〉

• (rename 〈import set1〉 (〈identifier2〉 〈identifier〉)
. . . )

• (prefix 〈import set〉 〈identifier〉)

• (only 〈import set〉 〈identifier〉 . . . )

• (except 〈import set〉 〈identifier〉 . . . )

In the first form, all of the identifiers in the named library’s
export clauses are imported with the same names (or the
exported names if exported with rename). The additional
〈import set〉 forms modify this set as follows:

• rename modifies the given 〈import set〉, replacing each
instance of 〈identifier1〉 with 〈identifier2〉. It is an
error if any of the listed identifiers are not found in
the original set.

• prefix automatically renames all identifiers in the
given 〈import set〉, prefixing each with the specified
〈identifier〉.

• only produces a subset of the given 〈import set〉, in-
cluding only the listed identifiers (after any renaming).
It is an error if any of the listed identifiers are not
found in the original set.

• except produces a subset of the given 〈import set〉,
excluding the listed identifiers (after any renaming).
It is an error if any of the listed identifiers are not
found in the original set.

The top level of a program may also include import dec-
larations. In a library declaration, it is an error to import
the same identifier more than once with different bindings,
or to redefine or mutate an imported binding with define,
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define-syntax or set!. However, a REPL should permit
these actions.

The begin, include, and include-ci declarations are
used to specify the commands and definitions that make
up the body of the library. The begin declaration takes
a list of expressions and definitions to be spliced literally,
analogous to the top-level begin. Both the include and
include-ci declarations take one or more filenames ex-
pressed as string literals, apply an implementation-specific
algorithm to find corresponding files, read the whole con-
tents of each file, and include the results into the library
body or program as though wrapped in a top-level begin.
The difference between the two is that include-ci reads
each file as if it began with the #!fold-case directive,
while include does not. All three may appear at the top
level of a program.

Note: Implementations are encouraged to search for files in

the directory which contains the including file, and to provide

a way for users to specify other directories to search.

Note: For portability, include and include-ci must operate

on source files. Their operation on other kinds of files necessarily

varies among implementations.

The cond-expand library declaration provides a way to
statically expand different library declarations depending
on the implementation under which the library is being
loaded. A 〈cond-expand clause〉 takes the following form:

(〈feature requirement〉 〈library declaration〉 . . . )
The last clause may be an “else clause,” which has the form

(else 〈library declaration〉 . . . )
A 〈feature requirement〉 takes one of the following forms:

• 〈feature identifier〉

• (library 〈library name〉)

• (and 〈feature requirement〉 . . . )

• (or 〈feature requirement〉 . . . )

• (not 〈feature requirement〉)

Each implementation maintains a list of feature identifiers
which are present, as well as a list of libraries which can be
imported. The value of a 〈feature requirement〉 is deter-
mined by replacing each 〈feature identifier〉 and (library

〈library name〉) on the implementation’s lists with #t, and
all other feature identifiers and library names with #f, then
evaluating the resulting expression as a Scheme boolean ex-
pression under the normal interpretation of and, or, and
not.

A cond-expand is then expanded by evaluating the
〈feature requirement〉s of successive 〈cond-expand clause〉s
in order, until one of them returns #t. When a true clause

is found, the corresponding 〈library declaration〉s are
spliced into the current library definition and the remaining
clauses are ignored. If none of the 〈feature requirement〉s
evaluate to #t, then if there is an else clause, its
〈library declaration〉s are included. Otherwise, the
cond-expand has no effect.

The exact features provided are implementation-defined,
but for portability a core set of features is given in ap-
pendix B.

After all cond-expand library declarations are expanded,
a new environment is constructed for the library consisting
of all imported bindings. The expressions and declarations
from all begin, include and include-ci declarations are
expanded in that environment in the order in which they
occur in the library declaration.

The top-level expressions in a library are executed in the
order in which they occur when the library is loaded. A
library is loaded zero or more times when it is imported
by a program or by another library which is about to be
loaded, but must be loaded at least once in every program
in which it is so imported.

5.5.2. Library example

The following example shows how a program may be
divided into libraries plus a relatively small main pro-
gram [18]. If the main program is entered into a REPL, it
is not necessary to import the base library.

(define-library (example grid)

(export make rows cols ref each

(rename put! set!))

(import (scheme base))

(begin

;; Create an NxM grid.

(define (make n m)

(let ((grid (make-vector n)))

(do ((i 0 (+ i 1)))

((= i n) grid)

(let ((v (make-vector m #f)))

(vector-set! grid i v)))))

(define (rows grid)

(vector-length grid))

(define (cols grid)

(vector-length (vector-ref grid 0)))

;; Return #false if out of range.

(define (ref grid n m)

(and (< -1 n (rows grid))

(< -1 m (cols grid))

(vector-ref (vector-ref grid n) m)))

(define (put! grid n m v)

(vector-set! (vector-ref grid n) m v))

(define (each grid proc)

(do ((j 0 (+ j 1)))

((= j (rows grid)))

(do ((k 0 (+ k 1)))
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((= k (cols grid)))

(proc j k (ref grid j k)))))))

(define-library (example life)

(export life)

(import (except (scheme base) set!)

(scheme write)

(example grid))

(begin

(define (life-count grid i j)

(define (count i j)

(if (ref grid i j) 1 0))

(+ (count (- i 1) (- j 1))

(count (- i 1) j)

(count (- i 1) (+ j 1))

(count i (- j 1))

(count i (+ j 1))

(count (+ i 1) (- j 1))

(count (+ i 1) j)

(count (+ i 1) (+ j 1))))

(define (life-alive? grid i j)

(case (life-count grid i j)

((3) #true)

((2) (ref grid i j))

(else #false)))

(define (life-print grid)

(display "\x1B;[1H\x1B;[J") ; clear vt100

(each grid

(lambda (i j v)

(display (if v "*" " "))

(when (= j (- (cols grid) 1))

(newline)))))

(define (life grid iterations)

(do ((i 0 (+ i 1))

(grid0 grid grid1)

(grid1 (make (rows grid) (cols grid))

grid0))

((= i iterations))

(each grid0

(lambda (j k v)

(let ((a (life-alive? grid0 j k)))

(set! grid1 j k a))))

(life-print grid1)))))

;; Main program.

(import (scheme base)

(only (example life) life)

(rename (prefix (example grid) grid-)

(grid-make make-grid)))

;; Initialize a grid with a glider.

(define grid (make-grid 24 24))

(grid-set! grid 1 1 #true)

(grid-set! grid 2 2 #true)

(grid-set! grid 3 0 #true)

(grid-set! grid 3 1 #true)

(grid-set! grid 3 2 #true)

;; Run for 80 iterations.

(life grid 80)

6. Standard procedures

This chapter describes Scheme’s built-in procedures.

The procedures force and eager are intimately associ-
ated with the expression types delay and lazy, and are
described with them in section 4.2.5. In the same way, the
procedure make-parameter is intimately associated with
the expression type parameterize, and is described with
it in section 4.2.6.

A program may use a top-level definition to bind any vari-
able. It may subsequently alter any such binding by an
assignment (see section 4.1.6). These operations do not
modify the behavior of any procedure defined in this re-
port or imported from a library. (see section 5.5). Altering
any top-level binding that has not been introduced by a
definition has an unspecified effect on the behavior of the
procedures defined in this chapter.

6.1. Equivalence predicates

A predicate is a procedure that always returns a boolean
value (#t or #f). An equivalence predicate is the compu-
tational analogue of a mathematical equivalence relation;
it is symmetric, reflexive, and transitive. Of the equiva-
lence predicates described in this section, eq? is the finest
or most discriminating, equal? is the coarsest, and eqv?

is slightly less discriminating than eq?.

(eqv? obj1 obj2) procedure

The eqv? procedure defines a useful equivalence relation on
objects. Briefly, it returns #t if obj1 and obj2 are normally
regarded as the same object. This relation is left slightly
open to interpretation, but the following partial specifica-
tion of eqv? holds for all implementations of Scheme.

The eqv? procedure returns #t if:

• obj1 and obj2 are both #t or both #f.

• obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)

(symbol->string obj2))

=⇒ #t

Note: This assumes that neither obj1 nor obj2 is an “un-

interned symbol” as alluded to in section 6.5. This report

does not specify the behavior of eqv? on implementation-

dependent extensions.
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• obj1 and obj2 are both numbers, are numerically equal
(see =, section 6.2), and are either both exact or both
inexact.

• obj1 and obj2 are both characters and are the same
character according to the char=? procedure (sec-
tion 6.6).

• obj1 and obj2 are both the empty list.

• obj1 and obj2 are pairs, vectors, bytevectors, records,
or strings that denote the same location in the store
(section 3.4).

The eqv? procedure returns #f if:

• obj1 and obj2 are of different types (section 3.2).

• one of obj1 and obj2 is #t but the other is #f.

• obj1 and obj2 are symbols but

(string=? (symbol->string obj1)
(symbol->string obj2))

=⇒ #f

• one of obj1 and obj2 is an exact number but the other
is an inexact number.

• obj1 and obj2 are numbers for which the = procedure
returns #f, and nan? returns #f for both.

• obj1 and obj2 are characters for which the char=? pro-
cedure returns #f.

• one of obj1 and obj2 is the empty list but the other is
not.

• obj1 and obj2 are pairs, vectors, bytevectors, records,
or strings that denote distinct locations.

• obj1 and obj2 are procedures that would behave dif-
ferently (return different values or have different side
effects) for some arguments.

(eqv? ’a ’a) =⇒ #t

(eqv? ’a ’b) =⇒ #f

(eqv? 2 2) =⇒ #t

(eqv? ’() ’()) =⇒ #t

(eqv? 100000000 100000000) =⇒ #t

(eqv? (cons 1 2) (cons 1 2))=⇒ #f

(eqv? (lambda () 1)

(lambda () 2)) =⇒ #f

(eqv? #f ’nil) =⇒ #f

The following examples illustrate cases in which the above
rules do not fully specify the behavior of eqv?. All that
can be said about such cases is that the value returned by
eqv? must be a boolean.

(eqv? "" "") =⇒ unspecified
(eqv? ’#() ’#()) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) =⇒ unspecified
(let ((p (lambda (x) x)))

(eqv? p p)) =⇒ unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified
(eqv? +nan.0 +nan.0) =⇒ unspecified

The next set of examples shows the use of eqv? with pro-
cedures that have local state. The gen-counter procedure
must return a distinct procedure every time, since each pro-
cedure has its own internal counter. The gen-loser pro-
cedure, however, returns equivalent procedures each time,
since the local state does not affect the value or side effects
of the procedures. However, eqv? may or may not detect
this equivalence.

(define gen-counter

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) n))))

(let ((g (gen-counter)))

(eqv? g g)) =⇒ #t

(eqv? (gen-counter) (gen-counter))

=⇒ #f

(define gen-loser

(lambda ()

(let ((n 0))

(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) =⇒ #t

(eqv? (gen-loser) (gen-loser))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’both ’f)))

(g (lambda () (if (eqv? f g) ’both ’g))))

(eqv? f g))

=⇒ unspecified

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))

(g (lambda () (if (eqv? f g) ’g ’both))))

(eqv? f g))

=⇒ #f

Since it is an error to modify constant objects (those re-
turned by literal expressions), implementations are per-
mitted, though not required, to share structure between
constants where appropriate. Thus the value of eqv? on
constants is sometimes implementation-dependent.

(eqv? ’(a) ’(a)) =⇒ unspecified
(eqv? "a" "a") =⇒ unspecified
(eqv? ’(b) (cdr ’(a b))) =⇒ unspecified
(let ((x ’(a)))

(eqv? x x)) =⇒ #t

Rationale: The above definition of eqv? allows implementa-

tions latitude in their treatment of procedures and literals: im-

plementations are free either to detect or to fail to detect that
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two procedures or two literals are equivalent to each other, and

can decide whether or not to merge representations of equivalent

objects by using the same pointer or bit pattern to represent

both.

(eq? obj1 obj2) procedure

The eq? procedure is similar to eqv? except that in some
cases it is capable of discerning distinctions finer than those
detectable by eqv?.

On symbols, booleans, the empty list, pairs, procedures,
non-empty strings, vectors, bytevectors, and records, eq?
and eqv? are guaranteed to have the same behavior. On
numbers and characters, eq?’s behavior is implementation-
dependent, but it will always return either true or false, and
will return true only when eqv? would also return true. On
empty strings, vectors, bytevectors, and records, eq? may
also behave differently from eqv?.

(eq? ’a ’a) =⇒ #t

(eq? ’(a) ’(a)) =⇒ unspecified
(eq? (list ’a) (list ’a)) =⇒ #f

(eq? "a" "a") =⇒ unspecified
(eq? "" "") =⇒ unspecified
(eq? ’() ’()) =⇒ #t

(eq? 2 2) =⇒ unspecified
(eq? #\A #\A) =⇒ unspecified
(eq? car car) =⇒ unspecified
(let ((n (+ 2 3)))

(eq? n n)) =⇒ unspecified
(let ((x ’(a)))

(eq? x x)) =⇒ #t

(let ((x ’#()))

(eq? x x)) =⇒ #t

(let ((p (lambda (x) x)))

(eq? p p)) =⇒ #t

Rationale: It will usually be possible to implement eq? much

more efficiently than eqv?, for example, as a simple pointer

comparison instead of as some more complicated operation.

One reason is that it is not always possible to compute eqv?

of two numbers in constant time, whereas eq? implemented as

pointer comparison will always finish in constant time. In appli-

cations using procedures to implement objects with state, eq?

may be used instead of eqv? since it obeys the same constraints

as eqv?.

(equal? obj1 obj2) procedure

The equal? procedure recursively compares the contents of
pairs, vectors, strings, bytevectors, and records, applying
eqv? on other objects such as numbers and symbols. If
two objects are eqv?, they must be equal? as well. Even
if its arguments are circular data structures, equal? must
always terminate.

(equal? ’a ’a) =⇒ #t

(equal? ’(a) ’(a)) =⇒ #t

(equal? ’(a (b) c)

’(a (b) c)) =⇒ #t

(equal? "abc" "abc") =⇒ #t

(equal? 2 2) =⇒ #t

(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) =⇒ #t

(equal? (lambda (x) x)

(lambda (y) y)) =⇒ unspecified

Note: A rule of thumb is that objects are generally equal? if

they print the same.

6.2. Numbers

It is important to distinguish between mathematical num-
bers, the Scheme numbers that attempt to model them,
the machine representations used to implement the Scheme
numbers, and notations used to write numbers. This report
uses the types number, complex, real, rational, and integer
to refer to both mathematical numbers and Scheme num-
bers.

6.2.1. Numerical types

Mathematically, numbers are arranged into a tower of sub-
types in which each level is a subset of the level above it:

number
complex number
real number
rational number
integer

For example, 3 is an integer. Therefore 3 is also a rational,
a real, and a complex number. The same is true of the
Scheme numbers that model 3. For Scheme numbers, these
types are defined by the predicates number?, complex?,
real?, rational?, and integer?.

There is no simple relationship between a number’s type
and its representation inside a computer. Although most
implementations of Scheme will offer at least two different
representations of 3, these different representations denote
the same integer.

Scheme’s numerical operations treat numbers as abstract
data, as independent of their representation as possible.
Although an implementation of Scheme may use multiple
internal representations of numbers, this should not be ap-
parent to a casual programmer writing simple programs.

It is necessary, however, to distinguish between numbers
that are represented exactly and those that might not be.
For example, indexes into data structures must be known
exactly, as must some polynomial coefficients in a symbolic
algebra system. On the other hand, the results of measure-
ments are inherently inexact, and irrational numbers may
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be approximated by rational and therefore inexact approx-
imations. In order to catch uses of inexact numbers where
exact numbers are required, Scheme explicitly distinguishes
exact from inexact numbers. This distinction is orthogonal
to the dimension of type.

6.2.2. Exactness

Scheme numbers are either exact or inexact. A number is
exact if it was written as an exact constant or was derived
from exact numbers using only exact operations. A number
is inexact if it was written as an inexact constant, if it
was derived using inexact ingredients, or if it was derived
using inexact operations. Thus inexactness is a contagious
property of a number.

If two implementations produce exact results for a com-
putation that did not involve inexact intermediate results,
the two ultimate results will be mathematically equivalent.
This is generally not true of computations involving inexact
numbers since approximate methods such as floating-point
arithmetic may be used, but it is the duty of each imple-
mentation to make the result as close as practical to the
mathematically ideal result.

Rational operations such as + should always produce exact
results when given exact arguments. If the operation is
unable to produce an exact result, then it may either report
the violation of an implementation restriction or it may
silently coerce its result to an inexact value. However, (/
3 4) must not return the mathematically incorrect value
0. See section 6.2.3.

Except for inexact->exact, the operations described in
this section must generally return inexact results when
given any inexact arguments. An operation may, however,
return an exact result if it can prove that the value of the
result is unaffected by the inexactness of its arguments.
For example, multiplication of any number by an exact
zero may produce an exact zero result, even if the other
argument is inexact.

6.2.3. Implementation restrictions

Implementations of Scheme are not required to implement
the whole tower of subtypes given in section 6.2.1, but they
must implement a coherent subset consistent with both
the purposes of the implementation and the spirit of the
Scheme language. For example, implementations in which
all numbers are real, or in which non-real numbers are al-
ways inexact, or in which exact numbers are always integer,
are still quite useful.

Implementations may also support only a limited range of
numbers of any type, subject to the requirements of this
section. The supported range for exact numbers of any
type may be different from the supported range for inexact

numbers of that type. For example, an implementation
that uses IEEE double-precision floating-point numbers to
represent all its inexact real numbers may also support a
practically unbounded range of exact integers and rationals
while limiting the range of inexact reals (and therefore the
range of inexact integers and rationals) to the dynamic
range of the IEEE double format. Furthermore, the gaps
between the representable inexact integers and rationals
are likely to be very large in such an implementation as
the limits of this range are approached.

An implementation of Scheme must support exact in-
tegers throughout the range of numbers permitted as
indexes of lists, vectors, bytevectors, and strings or
that result from computing the length of one of these.
The length, vector-length, bytevector-length, and
string-length procedures must return an exact integer,
and it is an error to use anything but an exact integer as
an index. Furthermore, any integer constant within the
index range, if expressed by an exact integer syntax, must
be read as an exact integer, regardless of any implemen-
tation restrictions that apply outside this range. Finally,
the procedures listed below will always return exact inte-
ger results provided all their arguments are exact integers
and the mathematically expected results are representable
as exact integers within the implementation:

+ - *

quotient remainder modulo

max min abs

numerator denominator gcd

lcm floor ceiling

truncate round rationalize

expt exact-integer-sqrt

floor/ ceiling/ centered/

truncate/ round/ euclidean/

floor-quotient floor-remainder

ceiling-quotient ceiling-remainder

centered-quotient centered-remainder

truncate-quotient truncate-remainder

round-quotient round-remainder

euclidean-quotient euclidean-remainder

It is recommended, but not required, that implementations
support exact integers and exact rationals of practically
unlimited size and precision, and to implement the above
procedures and the / procedure in such a way that they
always return exact results when given exact arguments. If
one of these procedures is unable to deliver an exact result
when given exact arguments, then it may either report a
violation of an implementation restriction or it may silently
coerce its result to an inexact number; such a coercion can
cause an error later. Nevertheless, implementations that do
not provide exact rational numbers should return inexact
rational numbers rather than reporting an implementation
restriction.
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An implementation may use floating-point and other ap-
proximate representation strategies for inexact numbers.
This report recommends, but does not require, that imple-
mentations that use floating-point representations follow
the IEEE 754 standard, and that implementations using
other representations should match or exceed the preci-
sion achievable using these floating-point standards [19].
In particular, the description of transcendental functions
in IEEE 754-2008 should be followed by such implementa-
tions, particularly with respect to infinities and NaNs.

Although Scheme allows a variety of written notations for
numbers, any particular implementation may support only
some of them. For example, an implementation in which
all numbers are real need not support the rectangular and
polar notations for complex numbers. If an implementa-
tion encounters an exact numerical constant that it cannot
represent as an exact number, then it may either report a
violation of an implementation restriction or it may silently
represent the constant by an inexact number.

6.2.4. Implementation extensions

Implementations may provide more than one representa-
tion of floating-point numbers with differing precisions. In
an implementation which does so, an inexact result must
be represented with at least as much precision as is used
to express any of the inexact arguments to that operation.
Although it is desirable for potentially inexact operations
such as sqrt to produce exact answers when applied to
exact arguments, if an exact number is operated upon so
as to produce an inexact result, then the most precise rep-
resentation available must be used. For example, the value
of (sqrt 4) should be 2, but in an implementation that
provides both single and double precision floating point
numbers it may be the latter but must not be the former.

In addition, implementations may distinguish special num-
bers called positive infinity, negative infinity, NaN, and
negative zero.

Positive infinity is regarded as an inexact real (but not
rational) number that represents an indeterminate value
greater than the numbers represented by all rational num-
bers. Negative infinity is regarded as an inexact real
(but not rational) number that represents an indetermi-
nate value less than the numbers represented by all rational
numbers.

A NaN is regarded as an inexact real (but not rational)
number so indeterminate that it might represent any real
value, including positive or negative infinity, and might
even be greater than positive infinity or less than negative
infinity. It might even represent no number at all, as in the
case of (asin 2.0).

Note that the real and the imaginary parts of a complex
number can be infinities or NaNs.

Negative zero is an inexact real value written -0.0 which is
distinct (in the sense of eqv?) from 0.0. A Scheme imple-
mentation is not required to distinguish negative zero. If it
does, however, the behavior of the transcendental functions
is sensitive to the distinction in accordance with IEEE 754.

Furthermore, the negation of negative zero is ordinary zero
and vice versa. This implies that the sum of two negative
zeros is negative, and the result of subtracting (positive)
zero from a negative zero is likewise negative. However,
numerical comparisons treat negative zero as equal to zero.

6.2.5. Syntax of numerical constants

The syntax of the written representations for numbers is
described formally in section 7.1.1. Note that case is not
significant in numerical constants.

A number can be written in binary, octal, decimal, or hexa-
decimal by the use of a radix prefix. The radix prefixes
are #b (binary), #o (octal), #d (decimal), and #x (hexa-
decimal). With no radix prefix, a number is assumed to be
expressed in decimal.

A numerical constant can be specified to be either exact or
inexact by a prefix. The prefixes are #e for exact, and #i

for inexact. An exactness prefix may appear before or after
any radix prefix that is used. If the written representation
of a number has no exactness prefix, the constant is inexact
if it contains a decimal point or an exponent. Otherwise,
it is exact.

In systems with inexact numbers of varying precisions it
can be useful to specify the precision of a constant. For
this purpose, implementations may accept numerical con-
stants written with an exponent marker that indicates the
desired precision of the inexact representation. The let-
ters s, f, d, and l, meaning short , single, double, and long
precision respectively, are acceptable in place of e. The
default precision has at least as much precision as double,
but implementations may allow this default to be set by
the user.

3.14159265358979F0

Round to single — 3.141593

0.6L0

Extend to long — .600000000000000

The numbers positive infinity, negative infinity and NaN
are written +inf.0, -inf.0 and +nan.0 respectively. Im-
plementations are not required to support them, but if they
do, they must be in conformance with IEEE 754. How-
ever, implementations are not required to support signal-
ing NaNs, or provide a way to distinguish between different
NaNs.

6.2.6. Numerical operations

The reader is referred to section 1.3.3 for a summary of
the naming conventions used to specify restrictions on the
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types of arguments to numerical routines. The examples
used in this section assume that any numerical constant
written using an exact notation is indeed represented as
an exact number. Some examples also assume that cer-
tain numerical constants written using an inexact notation
can be represented without loss of accuracy; the inexact
constants were chosen so that this is likely to be true in
implementations that use IEEE doubles to represent inex-
act numbers.

(number? obj) procedure
(complex? obj) procedure
(real? obj) procedure
(rational? obj) procedure
(integer? obj) procedure

These numerical type predicates can be applied to any kind
of argument, including non-numbers. They return #t if the
object is of the named type, and otherwise they return #f.
In general, if a type predicate is true of a number then
all higher type predicates are also true of that number.
Consequently, if a type predicate is false of a number, then
all lower type predicates are also false of that number.

If z is a complex number, then (real? z) is true
if and only if (zero? (imag-part z)) and (exact?

(imag-part z)) are both true. If x is an inexact real num-
ber, then (integer? x) is true if and only if (= x (round

x)).

The numbers +inf.0, -inf.0, and +nan.0 are real but not
rational.

(complex? 3+4i) =⇒ #t

(complex? 3) =⇒ #t

(real? 3) =⇒ #t

(real? -2.5+0i) =⇒ #t

(real? -2.5+0.0i) =⇒ #f

(real? #e1e10) =⇒ #t

(real? +inf.0) =⇒ #t

(rational? -inf.0) =⇒ #f

(rational? 6/10) =⇒ #t

(rational? 6/3) =⇒ #t

(integer? 3+0i) =⇒ #t

(integer? 3.0) =⇒ #t

(integer? 8/4) =⇒ #t

Note: The behavior of these type predicates on inexact num-

bers is unreliable, since any inaccuracy might affect the result.

Note: In many implementations the complex? procedure will

be the same as number?, but unusual implementations may be

able to represent some irrational numbers exactly or may ex-

tend the number system to support some kind of non-complex

numbers.

(exact? z) procedure
(inexact? z) procedure

These numerical predicates provide tests for the exactness

of a quantity. For any Scheme number, precisely one of
these predicates is true.

(exact? 3.0) =⇒ #f

(exact? #e3.0) =⇒ #t

(inexact? 3.) =⇒ #t

(exact-integer? z) procedure

Returns #t if z is both exact and an integer; otherwise
returns #f.

(exact-integer? 32) =⇒ #t

(exact-integer? 32.0) =⇒ #f

(exact-integer? 32/5) =⇒ #f

(finite? z) inexact library procedure

The finite? procedure returns #t on all real numbers ex-
cept +inf.0, -inf.0, and +nan.0, and on complex num-
bers if their real and imaginary parts are both finite. Oth-
erwise it returns #f.

(finite? 3) =⇒ #t

(finite? +inf.0) =⇒ #f

(finite? 3.0+inf.0i) =⇒ #f

(nan? z) inexact library procedure

The nan? procedure returns #t on +nan.0, and on any
complex number if its real part or its imaginary part or
both are +nan.0. Otherwise it returns #f.

(nan? +nan.0) =⇒ #t

(nan? 32) =⇒ #f

(nan? +nan.0+5.0i) =⇒ #t

(nan? 1+2i) =⇒ #f

(= z1 z2 z3 . . . ) procedure
(< x1 x2 x3 . . . ) procedure
(> x1 x2 x3 . . . ) procedure
(<= x1 x2 x3 . . . ) procedure
(>= x1 x2 x3 . . . ) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing, and #f otherwise. If any of the arguments
are +nan.0, all the predicates return #f.

These predicates are required to be transitive.

Note: The traditional implementations of these predicates in

Lisp-like languages are not transitive.

Note: While it is not an error to compare inexact numbers

using these predicates, the results are unreliable because a small
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inaccuracy can affect the result; this is especially true of = and

zero?. When in doubt, consult a numerical analyst.

(zero? z) procedure
(positive? x) procedure
(negative? x) procedure
(odd? n) procedure
(even? n) procedure

These numerical predicates test a number for a particular
property, returning #t or #f. See note above.

(max x1 x2 . . . ) procedure
(min x1 x2 . . . ) procedure

These procedures return the maximum or minimum of their
arguments.

(max 3 4) =⇒ 4 ; exact

(max 3.9 4) =⇒ 4.0 ; inexact

Note: If any argument is inexact, then the result will also be

inexact (unless the procedure can prove that the inaccuracy is

not large enough to affect the result, which is possible only in

unusual implementations). If min or max is used to compare

numbers of mixed exactness, and the numerical value of the

result cannot be represented as an inexact number without loss

of accuracy, then the procedure may report a violation of an

implementation restriction.

(+ z1 . . . ) procedure
(* z1 . . . ) procedure

These procedures return the sum or product of their argu-
ments.

(+ 3 4) =⇒ 7

(+ 3) =⇒ 3

(+) =⇒ 0

(* 4) =⇒ 4

(*) =⇒ 1

(- z1 z2) procedure
(- z) procedure
(- z1 z2 . . . ) procedure
(/ z1 z2) procedure
(/ z) procedure
(/ z1 z2 . . . ) procedure

With two or more arguments, these procedures return the
difference or quotient of their arguments, associating to the
left. With one argument, however, they return the additive
or multiplicative inverse of their argument. It is an error
if any argument of / other than the first is an exact zero.

(- 3 4) =⇒ -1

(- 3 4 5) =⇒ -6

(- 3) =⇒ -3

(/ 3 4 5) =⇒ 3/20

(/ 3) =⇒ 1/3

(abs x) procedure

The abs procedure returns the absolute value of its argu-
ment.

(abs -7) =⇒ 7

(floor/ n1 n2) procedure
(floor-quotient n1 n2) procedure
(floor-remainder n1 n2) procedure
(ceiling/ n1 n2) procedure
(ceiling-quotient n1 n2) procedure
(ceiling-remainder n1 n2) procedure
(truncate/ n1 n2) procedure
(truncate-quotient n1 n2) procedure
(truncate-remainder n1 n2) procedure
(round/ n1 n2) procedure
(round-quotient n1 n2) procedure
(round-remainder n1 n2) procedure
(euclidean/ n1 n2) procedure
(euclidean-quotient n1 n2) procedure
(euclidean-remainder n1 n2) procedure
(centered/ n1 n2) procedure
(centered-quotient n1 n2) procedure
(centered-remainder n1 n2) procedure

These procedures, all in the division library, implement
number-theoretic (integer) division. It is an error if n2
is zero. The procedures ending in / return two integers;
the other procedures return an integer. All the procedures
compute a quotient nq and remainder nr such that n1 =
n2nq +nr. For each of the six division operators, there are
three procedures defined as follows:

(〈operator〉/ n1 n2) =⇒ nq nr

(〈operator〉-quotient n1 n2) =⇒ nq

(〈operator〉-remainder n1 n2) =⇒ nr

The remainder nr is determined by the choice of integer
nq: nr = n1 − n2nq. Each set of operators uses a different
choice of nq:

ceiling nq = dn1/n2e
floor nq = bn1/n2c
truncate nq = truncate(n1/n2)
round nq = [n1/n2]
euclidean if n2 > 0, nq = bn1/n2c; if n2 < 0, nq = dn1/n2e
centered choose nq such that −|n2/2| <= nr < |n2/2|

For any of the operators, and for integers n1 and n2 with
n2 not equal to 0,

(= n1 (+ (* n2 (〈operator〉-quotient n1 n2))

(〈operator〉-remainder n1 n2)))

=⇒ #t

provided all numbers involved in that computation are ex-
act.

See [5] for discussion.
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(quotient n1 n2) procedure
(remainder n1 n2) procedure
(modulo n1 n2) procedure

The quotient and remainder procedures are equivalent
to truncate-quotient and truncate-remainder, respec-
tively, and modulo is equivalent to floor-remainder.

(modulo 13 4) =⇒ 1

(remainder 13 4) =⇒ 1

(modulo -13 4) =⇒ 3

(remainder -13 4) =⇒ -1

(modulo 13 -4) =⇒ -3

(remainder 13 -4) =⇒ 1

(modulo -13 -4) =⇒ -1

(remainder -13 -4) =⇒ -1

(remainder -13 -4.0) =⇒ -1.0 ; inexact

Note: These procedures are provided for backward compati-

bility with earlier versions of this report.

(gcd n1 . . . ) procedure
(lcm n1 . . . ) procedure

These procedures return the greatest common divisor or
least common multiple of their arguments. The result is
always non-negative.

(gcd 32 -36) =⇒ 4

(gcd) =⇒ 0

(lcm 32 -36) =⇒ 288

(lcm 32.0 -36) =⇒ 288.0 ; inexact

(lcm) =⇒ 1

(numerator q) procedure
(denominator q) procedure

These procedures return the numerator or denominator of
their argument; the result is computed as if the argument
was represented as a fraction in lowest terms. The denom-
inator is always positive. The denominator of 0 is defined
to be 1.

(numerator (/ 6 4)) =⇒ 3

(denominator (/ 6 4)) =⇒ 2

(denominator

(exact->inexact (/ 6 4))) =⇒ 2.0

(floor x) procedure
(ceiling x) procedure
(truncate x) procedure
(round x) procedure

These procedures return integers. The floor procedure
returns the largest integer not larger than x. The ceiling

procedure returns the smallest integer not smaller than x,
truncate returns the integer closest to x whose absolute
value is not larger than the absolute value of x, and round

returns the closest integer to x, rounding to even when x
is halfway between two integers.

Rationale: The round procedure rounds to even for consistency

with the default rounding mode specified by the IEEE 754 IEEE

floating-point standard.

Note: If the argument to one of these procedures is inexact,

then the result will also be inexact. If an exact value is needed,

the result can be passed to the inexact->exact procedure.

(floor -4.3) =⇒ -5.0

(ceiling -4.3) =⇒ -4.0

(truncate -4.3) =⇒ -4.0

(round -4.3) =⇒ -4.0

(floor 3.5) =⇒ 3.0

(ceiling 3.5) =⇒ 4.0

(truncate 3.5) =⇒ 3.0

(round 3.5) =⇒ 4.0 ; inexact

(round 7/2) =⇒ 4 ; exact

(round 7) =⇒ 7

(rationalize x y) procedure

The rationalize procedure returns the simplest rational
number differing from x by no more than y. A rational
number r1 is simpler than another rational number r2 if
r1 = p1/q1 and r2 = p2/q2 (in lowest terms) and |p1| ≤ |p2|
and |q1| ≤ |q2|. Thus 3/5 is simpler than 4/7. Although not
all rationals are comparable in this ordering (consider 2/7
and 3/5) any interval contains a rational number that is
simpler than every other rational number in that interval
(the simpler 2/5 lies between 2/7 and 3/5). Note that
0 = 0/1 is the simplest rational of all.

(rationalize

(inexact->exact .3) 1/10) =⇒ 1/3 ; exact

(rationalize .3 1/10) =⇒ #i1/3 ; inexact

(exp z) inexact library procedure
(log z) inexact library procedure
(sin z) inexact library procedure
(cos z) inexact library procedure
(tan z) inexact library procedure
(asin z) inexact library procedure
(acos z) inexact library procedure
(atan z) inexact library procedure
(atan y x) inexact library procedure

These procedures compute the usual transcendental func-
tions. The log procedure computes the natural loga-
rithm of z (not the base ten logarithm). The asin,
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acos, and atan procedures compute arcsine (sin−1), ar-
ccosine (cos−1), and arctangent (tan−1), respectively.
The two-argument variant of atan computes (angle

(make-rectangular x y)) (see below), even in imple-
mentations that don’t support the complex library.

In general, the mathematical functions log, arcsine, arc-
cosine, and arctangent are multiply defined. The value of
log z is defined to be the one whose imaginary part lies in
the range from −π (exclusive) to π (inclusive). The value
of log 0 is undefined. With log defined this way, the val-
ues of sin−1 z, cos−1 z, and tan−1 z are according to the
following formulæ:

sin−1 z = −i log(iz +
√

1− z2)

cos−1 z = π/2− sin−1 z

tan−1 z = (log(1 + iz)− log(1− iz))/(2i)

The above specification follows [35], which in turn
cites [27]; refer to these sources for more detailed discussion
of branch cuts, boundary conditions, and implementation
of these functions. When it is possible, these procedures
produce a real result from a real argument.

(sqrt z) inexact library procedure

Returns the principal square root of z. The result will
have either a positive real part, or a zero real part and a
non-negative imaginary part.

(exact-integer-sqrt k) procedure

Returns two non-negative exact integers s and r where k =
s2 + r and k < (s+ 1)2.

(exact-integer-sqrt 4) =⇒ 2 0

(exact-integer-sqrt 5) =⇒ 2 1

(expt z1 z2) procedure

Returns z1 raised to the power z2. For nonzero z1, this is

z1
z2 = ez2 log z1

0.0z is 1.0 if z = 0.0, and 0.0 if (real-part z) is positive.
For other cases in which the first argument is zero, either
an error is signalled or an unspecified number is returned.

(make-rectangular x1 x2) complex library procedure
(make-polar x3 x4) complex library procedure
(real-part z) complex library procedure
(imag-part z) complex library procedure

(magnitude z) complex library procedure
(angle z) complex library procedure

Let x1, x2, x3, and x4 be real numbers and z be a complex
number such that

z = x1 + x2i = x3 · eix4

Then all of

(make-rectangular x1 x2) =⇒ z
(make-polar x3 x4) =⇒ z
(real-part z) =⇒ x1
(imag-part z) =⇒ x2
(magnitude z) =⇒ |x3|
(angle z) =⇒ xangle

are true, where −π < xangle ≤ π with xangle = x4 + 2πn
for some integer n.

The make-polar procedure may return an inexact complex
number even if its arguments are exact.

Rationale: The magnitude procedure is the same as abs for a

real argument, but abs is in the base library, whereas magnitude

is in the optional complex library.

(exact->inexact z) procedure
(inexact->exact z) procedure

The procedure exact->inexact returns an inexact repre-
sentation of z. The value returned is the inexact number
that is numerically closest to the argument. For inexact ar-
guments, the result is the same as the argument. For exact
complex numbers, the result is a complex number whose
real and imaginary parts are the result of applying exact->

inexact to the real and imaginary parts of the argument,
respectively. If an exact argument has no reasonably close
inexact equivalent, then a violation of an implementation
restriction may be reported.

The procedure inexact->exact returns an exact represen-
tation of z. The value returned is the exact number that is
numerically closest to the argument. For exact arguments,
the result is the same as the argument. For inexact non-
integral real arguments, the implementation may return a
rational approximation, or may report an implementation
violation. For inexact complex arguments, the result is a
complex number whose real and imaginary parts are the re-
sult of applying inexact->exact to the real and imaginary
parts of the argument, respectively. If an inexact argument
has no reasonably close exact equivalent, then a violation
of an implementation restriction may be reported.

These procedures implement the natural one-to-one corre-
spondence between exact and inexact integers throughout
an implementation-dependent range. See section 6.2.3.
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6.2.7. Numerical input and output

(number->string z) procedure
(number->string z radix) procedure

It is an error if radix is not one of 2, 8, 10, or 16. If
omitted, radix defaults to 10. The procedure number->
string takes a number and a radix and returns as a string
an external representation of the given number in the given
radix such that

(let ((number number)
(radix radix))

(eqv? number

(string->number (number->string number

radix)

radix)))

is true. It is an error if no possible result makes this ex-
pression true.

If z is inexact, the radix is 10, and the above expression
can be satisfied by a result that contains a decimal point,
then the result contains a decimal point and is expressed
using the minimum number of digits (exclusive of exponent
and trailing zeroes) needed to make the above expression
true [7, 9]; otherwise the format of the result is unspecified.

The result returned by number->string never contains an
explicit radix prefix.

Note: The error case can occur only when z is not a complex

number or is a complex number with a non-rational real or

imaginary part.

Rationale: If z is an inexact number and the radix is 10, then

the above expression is normally satisfied by a result containing

a decimal point. The unspecified case allows for infinities, NaNs,

and unusual representations.

(string->number string) procedure
(string->number string radix) procedure

Returns a number of the maximally precise representation
expressed by the given string. It is an error if radix is not
2, 8, 10, or 16. If supplied, radix is a default radix that
will be overridden if an explicit radix prefix is present in
string (e.g. "#o177"). If radix is not supplied, then the
default radix is 10. If string is not a syntactically valid
notation for a number, then string->number returns #f.

(string->number "100") =⇒ 100

(string->number "100" 16) =⇒ 256

(string->number "1e2") =⇒ 100.0

Note: The domain of string->number may be restricted by

implementations in the following ways. Whenever string con-

tains an explicit radix prefix, string->number is permitted to

return #f. If all numbers supported by an implementation are

real, then string->number is permitted to return #f whenever

string uses the polar or rectangular notations for complex num-

bers. If all numbers are integers, then string->number may

return #f whenever the fractional notation is used. If all num-

bers are exact, then string->number may return #f whenever

an exponent marker or explicit exactness prefix is used. If all

inexact numbers are integers, then string->number may return

#f whenever a decimal point is used.

6.3. Booleans

The standard boolean objects for true and false are writ-
ten as #t and #f. Alternatively, they may be written
#true and #false, respectively. What really matters,
though, are the objects that the Scheme conditional expres-
sions (if, cond, and, or, when, unless, do) treat as true or
false. The phrase “a true value” (or sometimes just “true”)
means any object treated as true by the conditional expres-
sions, and the phrase “a false value” (or “false”) means any
object treated as false by the conditional expressions.

Of all the Scheme values, only #f counts as false in condi-
tional expressions. All other Scheme values, including #t,
count as true.

Note: Unlike some other dialects of Lisp, Scheme distinguishes

#f and the empty list from each other and from the symbol

nil.

Boolean constants evaluate to themselves, so they do not
need to be quoted in programs.

#t =⇒ #t

#f =⇒ #f

’#f =⇒ #f

(not obj) procedure

The not procedure returns #t if obj is false, and returns
#f otherwise.

(not #t) =⇒ #f

(not 3) =⇒ #f

(not (list 3)) =⇒ #f

(not #f) =⇒ #t

(not ’()) =⇒ #f

(not (list)) =⇒ #f

(not ’nil) =⇒ #f

(boolean? obj) procedure

The boolean? predicate returns #t if obj is either #t or #f
and returns #f otherwise.

(boolean? #f) =⇒ #t

(boolean? 0) =⇒ #f

(boolean? ’()) =⇒ #f
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6.4. Pairs and lists

A pair (sometimes called a dotted pair) is a record structure
with two fields called the car and cdr fields (for historical
reasons). Pairs are created by the procedure cons. The
car and cdr fields are accessed by the procedures car and
cdr. The car and cdr fields are assigned by the procedures
set-car! and set-cdr!.

Pairs are used primarily to represent lists. A list can be
defined recursively as either the empty list or a pair whose
cdr is a list. More precisely, the set of lists is defined as
the smallest set X such that

• The empty list is in X .

• If list is in X , then any pair whose cdr field contains
list is also in X .

The objects in the car fields of successive pairs of a list are
the elements of the list. For example, a two-element list
is a pair whose car is the first element and whose cdr is a
pair whose car is the second element and whose cdr is the
empty list. The length of a list is the number of elements,
which is the same as the number of pairs.

The empty list is a special object of its own type It is not
a pair, it has no elements, and its length is zero.

Note: The above definitions imply that all lists have finite

length and are terminated by the empty list.

The most general notation (external representation) for
Scheme pairs is the “dotted” notation (c1 . c2) where c1
is the value of the car field and c2 is the value of the cdr
field. For example (4 . 5) is a pair whose car is 4 and
whose cdr is 5. Note that (4 . 5) is the external repre-
sentation of a pair, not an expression that evaluates to a
pair.

A more streamlined notation can be used for lists: the
elements of the list are simply enclosed in parentheses and
separated by spaces. The empty list is written () . For
example,

(a b c d e)

and

(a . (b . (c . (d . (e . ())))))

are equivalent notations for a list of symbols.

A chain of pairs not ending in the empty list is called an
improper list. Note that an improper list is not a list.
The list and dotted notations can be combined to represent
improper lists:

(a b c . d)

is equivalent to

(a . (b . (c . d)))

Whether a given pair is a list depends upon what is stored
in the cdr field. When the set-cdr! procedure is used, an
object can be a list one moment and not the next:

(define x (list ’a ’b ’c))

(define y x)

y =⇒ (a b c)

(list? y) =⇒ #t

(set-cdr! x 4) =⇒ unspecified
x =⇒ (a . 4)

(eqv? x y) =⇒ #t

y =⇒ (a . 4)

(list? y) =⇒ #f

(set-cdr! x x) =⇒ unspecified
(list? x) =⇒ #f

Within literal expressions and representations of ob-
jects read by the read procedure, the forms ’〈datum〉,
`〈datum〉, ,〈datum〉, and ,@〈datum〉 denote two-ele-
ment lists whose first elements are the symbols quote,
quasiquote, unquote, and unquote-splicing, respec-
tively. The second element in each case is 〈datum〉. This
convention is supported so that arbitrary Scheme programs
can be represented as lists. That is, according to Scheme’s
grammar, every 〈expression〉 is also a 〈datum〉 (see sec-
tion 7.1.2). Among other things, this permits the use of
the read procedure to parse Scheme programs. See sec-
tion 3.3.

(pair? obj) procedure

The pair? predicate returns #t if obj is a pair, and other-
wise returns #f.

(pair? ’(a . b)) =⇒ #t

(pair? ’(a b c)) =⇒ #t

(pair? ’()) =⇒ #f

(pair? ’#(a b)) =⇒ #f

(cons obj1 obj2) procedure

Returns a newly allocated pair whose car is obj1 and whose
cdr is obj2. The pair is guaranteed to be different (in the
sense of eqv?) from every existing object.

(cons ’a ’()) =⇒ (a)

(cons ’(a) ’(b c d)) =⇒ ((a) b c d)

(cons "a" ’(b c)) =⇒ ("a" b c)

(cons ’a 3) =⇒ (a . 3)

(cons ’(a b) ’c) =⇒ ((a b) . c)

(car pair) procedure

Returns the contents of the car field of pair . Note that it
is an error to take the car of the empty list.
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(car ’(a b c)) =⇒ a

(car ’((a) b c d)) =⇒ (a)

(car ’(1 . 2)) =⇒ 1

(car ’()) =⇒ error

(cdr pair) procedure

Returns the contents of the cdr field of pair . Note that it
is an error to take the cdr of the empty list.

(cdr ’((a) b c d)) =⇒ (b c d)

(cdr ’(1 . 2)) =⇒ 2

(cdr ’()) =⇒ error

(set-car! pair obj) procedure

Stores obj in the car field of pair . The value returned by
set-car! is unspecified.

(define (f) (list ’not-a-constant-list))

(define (g) ’(constant-list))

(set-car! (f) 3) =⇒ unspecified
(set-car! (g) 3) =⇒ error

(set-cdr! pair obj) procedure

Stores obj in the cdr field of pair . The value returned by
set-cdr! is unspecified.

(caar pair) procedure
(cadr pair) procedure

...
...

(cdddar pair) procedure
(cddddr pair) procedure

These procedures are compositions of car and cdr, where
for example caddr could be defined by

(define caddr (lambda (x) (car (cdr (cdr x))))).

Arbitrary compositions, up to four deep, are provided.
There are twenty-eight of these procedures in all.

(null? obj) procedure

Returns #t if obj is the empty list, otherwise returns #f.

(list? obj) procedure

Returns #t if obj is a list. Otherwise, it returns #f. By
definition, all lists have finite length and are terminated by
the empty list.

(list? ’(a b c)) =⇒ #t

(list? ’()) =⇒ #t

(list? ’(a . b)) =⇒ #f

(let ((x (list ’a)))

(set-cdr! x x)

(list? x)) =⇒ #f

(make-list k) procedure
(make-list k fill) procedure

Returns a newly allocated list of k elements. If a second
argument is given, then each element is initialized to fill .
Otherwise the initial contents of each element is unspeci-
fied.

(make-list 2 3) =⇒ (3 3)

(list obj . . . ) procedure

Returns a newly allocated list of its arguments.

(list ’a (+ 3 4) ’c) =⇒ (a 7 c)

(list) =⇒ ()

(length list) procedure

Returns the length of list .

(length ’(a b c)) =⇒ 3

(length ’(a (b) (c d e))) =⇒ 3

(length ’()) =⇒ 0

(append list . . . ) procedure

Returns a list consisting of the elements of the first list
followed by the elements of the other lists.

(append ’(x) ’(y)) =⇒ (x y)

(append ’(a) ’(b c d)) =⇒ (a b c d)

(append ’(a (b)) ’((c))) =⇒ (a (b) (c))

The resulting list is always newly allocated, except that
it shares structure with the last list argument. The last
argument may actually be any object; an improper list
results if the last argument is not a proper list.

(append ’(a b) ’(c . d)) =⇒ (a b c . d)

(append ’() ’a) =⇒ a

(reverse list) procedure

Returns a newly allocated list consisting of the elements of
list in reverse order.

(reverse ’(a b c)) =⇒ (c b a)

(reverse ’(a (b c) d (e (f))))

=⇒ ((e (f)) d (b c) a)

(list-tail list k) procedure

Returns the sublist of list obtained by omitting the first k
elements. It is an error if list has fewer than k elements.
The list-tail procedure could be defined by
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(define list-tail

(lambda (x k)

(if (zero? k)

x

(list-tail (cdr x) (- k 1)))))

(list-ref list k) procedure

Returns the kth element of list . (This is the same as the
car of (list-tail list k).) It is an error if list has fewer
than k elements.

(list-ref ’(a b c d) 2) =⇒ c

(list-ref ’(a b c d)

(inexact->exact (round 1.8)))

=⇒ c

(list-set! list k obj) procedure

The list-set! procedure stores obj in element k of list .
It is an error if k is not a valid index of list . The value
returned by list-set! is unspecified.

(let ((ls (list ’one ’two ’five!)))

(list-set! ls 2 ’three)

ls)

=⇒ (one two three)

(list-set! ’(0 1 2) 1 "oops")

=⇒ error ; constant list

(memq obj list) procedure
(memv obj list) procedure
(member obj list) procedure
(member obj list compare) procedure

These procedures return the first sublist of list whose car
is obj , where the sublists of list are the non-empty lists
returned by (list-tail list k) for k less than the length
of list . If obj does not occur in list , then #f (not the empty
list) is returned. The memq procedure uses eq? to compare
obj with the elements of list , while memv uses eqv? and
member uses compare, if given, and equal? otherwise.

(memq ’a ’(a b c)) =⇒ (a b c)

(memq ’b ’(a b c)) =⇒ (b c)

(memq ’a ’(b c d)) =⇒ #f

(memq (list ’a) ’(b (a) c)) =⇒ #f

(member (list ’a)

’(b (a) c)) =⇒ ((a) c)

(member "B"

’("a" "b" "c")

string-ci=?) =⇒ ("b" "c")

(memq 101 ’(100 101 102)) =⇒ unspecified
(memv 101 ’(100 101 102)) =⇒ (101 102)

(assq obj alist) procedure
(assv obj alist) procedure
(assoc obj alist) procedure
(assoc obj alist compare) procedure

It is an error if alist (for “association list”) is not a list of
pairs. These procedures find the first pair in alist whose
car field is obj , and returns that pair. If no pair in alist
has obj as its car, then #f (not the empty list) is returned.
The assq procedure uses eq? to compare obj with the car
fields of the pairs in alist , while assv uses eqv? and assoc

uses compare if given and equal? otherwise.

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) =⇒ (a 1)

(assq ’b e) =⇒ (b 2)

(assq ’d e) =⇒ #f

(assq (list ’a) ’(((a)) ((b)) ((c))))

=⇒ #f

(assoc (list ’a) ’(((a)) ((b)) ((c))))

=⇒ ((a))

(assoc 2.0 ’((1 1) (2 4) (3 9)) =)

=⇒ (2 4)

(assq 5 ’((2 3) (5 7) (11 13)))

=⇒ unspecified
(assv 5 ’((2 3) (5 7) (11 13)))

=⇒ (5 7)

Rationale: Although they are often used as predicates, memq,

memv, member, assq, assv, and assoc do not have question

marks in their names because they return potentially useful

values rather than just #t or #f.

(list-copy list) procedure

Returns a newly allocated copy of the given list . Only the
pairs themselves are copied; the cars of the result are the
same (in the sense of eqv? as the cars of list . If the last
pair of list has a cdr which is not the empty list, the last
pair of the result does, too. An argument which is not a
list is returned unchanged.

6.5. Symbols

Symbols are objects whose usefulness rests on the fact that
two symbols are identical (in the sense of eqv?) if and only
if their names are spelled the same way. For instance, they
can be used the way enumerated values are used in other
languages.

The rules for writing a symbol are exactly the same as the
rules for writing an identifier; see sections 2.1 and 7.1.1.

It is guaranteed that any symbol that has been returned
as part of a literal expression, or read using the read pro-
cedure, and subsequently written out using the write pro-
cedure, will read back in as the identical symbol (in the
sense of eqv?).
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Note: Some implementations have values known as “unin-

terned symbols,” which defeat write/read invariance, and also

violate the rule that two symbols are the same if and only if

their names are spelled the same.

(symbol? obj) procedure

Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) =⇒ #t

(symbol? (car ’(a b))) =⇒ #t

(symbol? "bar") =⇒ #f

(symbol? ’nil) =⇒ #t

(symbol? ’()) =⇒ #f

(symbol? #f) =⇒ #f

(symbol->string symbol) procedure

Returns the name of symbol as a string. It is an error
to apply mutation procedures like string-set! to strings
returned by this procedure.

(symbol->string ’flying-fish)

=⇒ "flying-fish"

(symbol->string ’Martin) =⇒ "Martin"

(symbol->string

(string->symbol "Malvina"))

=⇒ "Malvina"

(string->symbol string) procedure

Returns the symbol whose name is string . This procedure
can create symbols with names containing special charac-
ters that would require escaping when written.

(string->symbol "mISSISSIppi")

=⇒ mISSISSIppi

(eq? ’bitBlt (string->symbol "bitBlt"))

=⇒ #t

(eq? ’JollyWog

(string->symbol

(symbol->string ’JollyWog)))

=⇒ #t

(string=? "K. Harper, M.D."

(symbol->string

(string->symbol "K. Harper, M.D.")))

=⇒ #t

6.6. Characters

Characters are objects that represent printed characters
such as letters and digits. All Scheme implementations
must support at least the ASCII character repertoire: that
is, Unicode characters U+0000 through U+007F. Imple-
mentations may support any other Unicode characters they
see fit, and may also support non-Unicode characters as
well. Except as otherwise specified, the result of applying

any of the following procedures to a non-Unicode character
is implementation-dependent.

Characters are written using the notation #\〈character〉 or
#\〈character name〉 or #\x〈hex scalar value〉.

Here are some examples:

#\a ; lower case letter
#\A ; upper case letter
#\( ; left parenthesis
#\ ; the space character
#\iota ; ι (if supported)
#\x03BB ; λ (if supported)

The following character names must be supported by all
implementations:

#\alarm ; U+0007
#\backspace ; U+0008
#\delete ; U+007F
#\escape ; U+001B
#\newline ; the linefeed character, U+000A
#\null ; the null character, U+0000
#\return ; the return character, U+000D
#\space ; the preferred way to write a space
#\tab ; the tab character, U+0009

Case is significant in #\〈character〉, and in #\〈character
name〉, but not in #\x〈hex scalar value〉. If 〈character〉 in
#\〈character〉 is alphabetic, then any character immedi-
ately following 〈character〉 must be a delimiter character
such as a space or parenthesis. This rule resolves the am-
biguous case where, for example, the sequence of characters
“#\space” could be taken to be either a representation of
the space character or a representation of the character
“#\s” followed by a representation of the symbol “pace.”

Characters written in the #\ notation are self-evaluating.
That is, they do not have to be quoted in programs.

Some of the procedures that operate on characters ignore
the difference between upper case and lower case. The pro-
cedures that ignore case have “-ci” (for “case insensitive”)
embedded in their names.

(char? obj) procedure

Returns #t if obj is a character, otherwise returns #f.

(char=? char1 char2 char3 . . . ) procedure
(char<? char1 char2 char3 . . . ) procedure
(char>? char1 char2 char3 . . . ) procedure
(char<=? char1 char2 char3 . . . ) procedure
(char>=? char1 char2 char3 . . . ) procedure
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These procedures return #t if the Unicode codepoints cor-
responding to their arguments are (respectively): equal,
monotonically increasing, monotonically decreasing, mono-
tonically nondecreasing, or monotonically nonincreasing.

These predicates are required to be transitive.

These procedures impose a total ordering on the set of
characters which is the same as the Unicode code point
ordering. This is true whether or not the implementation
uses the Unicode representation internally.

(char-ci=? char1 char2 char3 . . . )
char library procedure

(char-ci<? char1 char2 char3 . . . )
char library procedure

(char-ci>? char1 char2 char3 . . . )
char library procedure

(char-ci<=? char1 char2 char3 . . . )
char library procedure

(char-ci>=? char1 char2 char3 . . . )
char library procedure

These procedures are similar to char=? et cetera, but they
treat upper case and lower case letters as the same. For
example, (char-ci=? #\A #\a) returns #t.

Specifically, these procedures behave as if char-foldcase
were applied to their arguments before they were com-
pared.

(char-alphabetic? char) char library procedure
(char-numeric? char) char library procedure
(char-whitespace? char) char library procedure
(char-upper-case? letter) char library procedure
(char-lower-case? letter) char library procedure

These procedures return #t if their arguments are alpha-
betic, numeric, whitespace, upper case, or lower case char-
acters, respectively, otherwise they return #f.

Specifically, they must return #t when applied to char-
acters with the Unicode properties Alphabetic, Nu-
meric Digit, White Space, Uppercase, and Lowercase re-
spectively, and #f when applied to any other Unicode char-
acters. Note that many Unicode characters are alphabetic
but neither upper nor lower case.

(digit-value char) char library procedure

This procedure returns the numeric value (0 to 9) of its
argument if it is a numeric digit (that is, if char-numeric?
returns #t), or #f on any other character.

(digit-value #\3) =⇒ 3

(digit-value #\x0664) =⇒ 4

(digit-value #\x0EA6) =⇒ 0

(char->integer char) procedure
(integer->char n) procedure

Given a Unicode character, char->integer returns an ex-
act integer between 0 and #xD7FF or between #xE000 and
#x10FFFF which is equal to the Unicode code point of that
character. Given a non-Unicode character, it returns an
exact integer greater than #x10FFFF. This is true indepen-
dent of whether the implementation uses the Unicode rep-
resentation internally.

Given an exact integer that is the value returned by a char-
acter when char->integer is applied to it, integer->char
returns that character.

(char-upcase char) char library procedure
(char-downcase char) char library procedure
(char-foldcase char) char library procedure

The char-upcase procedure, given an argument that is
the lowercase part of a Unicode casing pair, returns the
uppercase member of the pair, provided that both charac-
ters are supported by the Scheme implementation. Note
that language-sensitive casing pairs are not used. If the
argument is not the lowercase member of such a pair, it is
returned.

The char-downcase procedure, given an argument that is
the uppercase part of a Unicode casing pair, returns the
lowercase member of the pair, provided that both charac-
ters are supported by the Scheme implementation. Note
that language-sensitive casing pairs are not used. If the
argument is not the uppercase member of such a pair, it is
returned.

The char-foldcase procedure applies the Unicode simple
case-folding algorithm to its argument and returns the re-
sult. Note that language-sensitive folding is not used. If
the argument is an uppercase letter, the result will be ei-
ther a lowercase letter or the same as the argument if the
lowercase letter does not exist or is not supported by the
implementation. See UAX #29 [14] (part of the Unicode
Standard) for details.

Note that many Unicode lowercase characters do not have
uppercase equivalents.

6.7. Strings

Strings are sequences of characters. Strings are written as
sequences of characters enclosed within double quotes (").
Within a string literal, various escape sequences represent
characters other than themselves. Escape sequences always
start with a backslash (\):

• \a : alarm, U+0007

• \b : backspace, U+0008
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• \t : character tabulation, U+0009

• \n : linefeed, U+000A

• \r : return, U+000D

• \" : doublequote, U+0022

• \\ : backslash, U+005C

• \〈intraline whitespace〉〈line ending〉
〈intraline whitespace〉 : nothing

• \x〈hex scalar value〉; : specified character (note the
terminating semi-colon).

The result is unspecified if any other character in a string
occurs after a backslash.

Except for a line ending, any character outside of an escape
sequence stands for itself in the string literal. A line end-
ing which is preceded by \〈intraline whitespace〉 expands
to nothing (along with any trailing intraline whitespace),
and can be used to indent strings for improved legibility.
Any other line ending has the same effect as inserting a \n

character into the string.

Examples:

"The word \"recursion\" has many meanings."

"Another example:\ntwo lines of text"

"Here’s a text \

containing just one line"

"\x03B1; is named GREEK SMALL LETTER ALPHA."

The length of a string is the number of characters that it
contains. This number is an exact, non-negative integer
that is fixed when the string is created. The valid indexes
of a string are the exact non-negative integers less than
the length of the string. The first character of a string has
index 0, the second has index 1, and so on.

In phrases such as “the characters of string beginning with
index start and ending with index end ,” it is understood
that the index start is inclusive and the index end is ex-
clusive. Thus if start and end are the same index, a null
substring is referred to, and if start is zero and end is the
length of string , then the entire string is referred to. It is
an error if start is less than end .

Some of the procedures that operate on strings ignore the
difference between upper and lower case. The versions that
ignore case have “-ci” (for “case insensitive”) embedded
in their names.

Implementations may forbid certain characters from ap-
pearing in strings. For example, an implementation might
support the entire Unicode repertoire, but only allow char-
acters U+0000 to U+00FF (the Latin-1 repertoire) in
strings. It is an error to pass such a forbidden character to
make-string, string, string-set!, or string-fill!.

(string? obj) procedure

Returns #t if obj is a string, otherwise returns #f.

(make-string k) procedure
(make-string k char) procedure

The make-string procedure returns a newly allocated
string of length k. If char is given, then all the characters
of the string are initialized to char , otherwise the contents
of the string are unspecified.

(string char . . . ) procedure

Returns a newly allocated string composed of the argu-
ments. It is analogous to list.

(string-length string) procedure

Returns the number of characters in the given string .

(string-ref string k) procedure

It is an error if k is not a valid index of string . The
string-ref procedure returns character k of string us-
ing zero-origin indexing. There is no requirement for this
procedure to execute in constant time.

(string-set! string k char) procedure

It is an error if k is not a valid index of string . The
string-set! procedure stores char in element k of string
and returns an unspecified value. There is no requirement
for this procedure to execute in constant time.

(define (f) (make-string 3 #\*))

(define (g) "***")

(string-set! (f) 0 #\?) =⇒ unspecified
(string-set! (g) 0 #\?) =⇒ error
(string-set! (symbol->string ’immutable)

0

#\?) =⇒ error

(string=? string1 string2 string3 . . . ) procedure

Returns #t if all the strings are the same length and contain
exactly the same characters in the same positions, other-
wise returns #f.

(string-ci=? string1 string2 string3 . . . )
string library procedure

Returns #t if, after case-folding, all the strings are the
same length and contain the same characters in the same
positions, otherwise returns #f. Specifically, these proce-
dures behave as if string-foldcase were applied to their
arguments before comparing them.
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(string-ni=? string1 string2 string3 . . . ) procedure

Returns #t if, after an implementation-defined normaliza-
tion, all the strings are the same length and contain the
same characters in the same positions, otherwise returns
#f. The intent is to provide a means of comparing strings
that are considered equivalent in some situations but are
represented by a different sequence of characters.

Specifically, an implementation which supports Unicode
should use either Unicode normalization NFC or NFD
as specified by Unicode UAX#15 [13]. Implementations
which only support ASCII or some other character set
which provides no ambiguous representations of character
sequences may define the normalization to be the iden-
tity operation, in which case string-ni=? is equivalent to
string=?.

(string<? string1 string2 string3 . . . ) procedure
(string-ci<? string1 string2 string3 . . . )

char library procedure
(string-ni<? string1 string2 string3 . . . )

char library procedure
(string>? string1 string2 string3 . . . ) procedure
(string-ci>? string1 string2 string3 . . . )

char library procedure
(string-ni>? string1 string2 string3 . . . )

char library procedure
(string<=? string1 string2 string3 . . . ) procedure
(string-ci<=? string1 string2 string3 . . . )

char library procedure
(string-ni<=? string1 string2 string3 . . . )

char library procedure
(string>=? string1 string2 string3 . . . ) procedure
(string-ci>=? string1 string2 string3 . . . )

char library procedure
(string-ni>=? string1 string2 string3 . . . )

char library procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing.

These predicates are required to be transitive.

These procedures compare strings in an implementation-
defined way. One approach is to make them the lexico-
graphic extensions to strings of the corresponding order-
ings on characters. In that case, string<? would be the
lexicographic ordering on strings induced by the ordering
char<? on characters, and if the two strings differ in length
but are the same up to the length of the shorter string, the
shorter string would be considered to be lexicographically
less than the longer string. However, it is also permit-
ted to use the natural ordering imposed by the internal
representation of strings, or a more complex locale-specific
ordering.

In all cases, a pair of strings must satisfy exactly one
of string<?, string=?, and string>?, and must satisfy
string<=? if and only if they do not satisfy string>? and
string>=? if and only if they do not satisfy string<?.

The “-ci” procedures behave as if they applied
string-foldcase to their arguments before invoking the
corresponding procedures without “-ci”.

The “-ni” procedures behave as if they applied
the implementation-defined normalization used by
string-ni=? to their arguments before invoking the
corresponding procedures without “-ni”.

(string-upcase string) char library procedure
(string-downcase string) char library procedure
(string-foldcase string) char library procedure

These procedures apply the Unicode full string uppercas-
ing, lowercasing, and case-folding algorithms to their ar-
guments and return the result. If the result is equal to
the argument, the argument may be returned. Note that
language-sensitive mappings and foldings are not used.
The result may differ in length from the argument. What
is more, a few characters have case-mappings that depend
on the surrounding context. For example, Greek capital
sigma normally lowercases to Greek small sigma, but at
the end of a word it downcases to Greek small final sigma
instead. See UAX #29 [14] (part of the Unicode Standard)
for details.

(substring string start end) procedure

It is an error if start and end are not exact integers satis-
fying the inequality

0 ≤ start ≤ end ≤ (string-length string).

The substring procedure returns a newly allocated string
formed from the characters of string beginning with index
start (inclusive) and ending with index end (exclusive).

(string-append string . . . ) procedure

Returns a newly allocated string whose characters are the
concatenation of the characters in the given strings.

(string->list string) procedure
(list->string list) procedure

string->list returns a newly allocated list of the charac-
ters that make up the given string. list->string returns
a newly allocated string formed from the elements in the
list list . It is an error if any element is not a character.
In both procedures, order is preserved. string->list and
list->string are inverses so far as equal? is concerned.
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(string-copy string) procedure

Returns a newly allocated copy of the given string .

(string-fill! string char) procedure
(string-fill! string char start end) procedure

If start and end are given, string-fill! stores fill in all
the elements of string between start (inclusive) and end
(exclusive). It is an error if fill is not a character or is
forbidden in strings, or if start is less than end . If start
and endy are omitted, fill is stored in all the elements of
string . In any case, an unspecified value is returned.

6.8. Vectors

Vectors are heterogeneous structures whose elements are
indexed by integers. A vector typically occupies less space
than a list of the same length, and the average time needed
to access a randomly chosen element is typically less for the
vector than for the list.

The length of a vector is the number of elements that it
contains. This number is a non-negative integer that is
fixed when the vector is created. The valid indexes of a
vector are the exact non-negative integers less than the
length of the vector. The first element in a vector is indexed
by zero, and the last element is indexed by one less than
the length of the vector.

Vectors are written using the notation #(obj . . . ). For
example, a vector of length 3 containing the number zero
in element 0, the list (2 2 2 2) in element 1, and the
string "Anna" in element 2 can be written as following:

#(0 (2 2 2 2) "Anna")

Note that this is the external representation of a vector,
not an expression evaluating to a vector. It is an error not
to quote a vector constant:

’#(0 (2 2 2 2) "Anna")

=⇒ #(0 (2 2 2 2) "Anna")

(vector? obj) procedure

Returns #t if obj is a vector; otherwise returns #f.

(make-vector k) procedure
(make-vector k fill) procedure

Returns a newly allocated vector of k elements. If a second
argument is given, then each element is initialized to fill .
Otherwise the initial contents of each element is unspeci-
fied.

(vector obj . . . ) procedure

Returns a newly allocated vector whose elements contain
the given arguments. It is analogous to list.

(vector ’a ’b ’c) =⇒ #(a b c)

(vector-length vector) procedure

Returns the number of elements in vector as an exact in-
teger.

(vector-ref vector k) procedure

It is an error if k is not a valid index of vector . The
vector-ref procedure returns the contents of element k
of vector .

(vector-ref ’#(1 1 2 3 5 8 13 21)

5)

=⇒ 8

(vector-ref ’#(1 1 2 3 5 8 13 21)

(inexact->exact

(round (* 2 (acos -1)))))

=⇒ 13

(vector-set! vector k obj) procedure

It is an error if k is not a valid index of vector . The
vector-set! procedure stores obj in element k of vector .
The value returned by vector-set! is unspecified.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))

(vector-set! vec 1 ’("Sue" "Sue"))

vec)

=⇒ #(0 ("Sue" "Sue") "Anna")

(vector-set! ’#(0 1 2) 1 "doe")

=⇒ error ; constant vector

(vector->list vector) procedure
(list->vector list) procedure

The vector->list procedure returns a newly allocated list
of the objects contained in the elements of vector . The
list->vector procedure returns a newly created vector
initialized to the elements of the list list . In both proce-
dures, order is preserved.

(vector->list ’#(dah dah didah))

=⇒ (dah dah didah)

(list->vector ’(dididit dah))

=⇒ #(dididit dah)

(vector->string string) procedure
(string->vector vector) procedure

The vector->string procedure returns a newly allocated
string of the objects contained in the elements of vector .
It is an error if any element is not a character allowed in
strings. The string->vector procedure returns a newly
created vector initialized to the elements of the string
string . In both procedures, order is preserved.
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(string->vector "ABC") =⇒ #(#\A #\B #\C)

(vector->string

#(#\1 #\2 #\3) =⇒ "123"

(vector-copy vector) procedure
(vector-copy vector start) procedure
(vector-copy vector start end) procedure
(vector-copy vector start end fill) procedure

Returns a newly allocated copy of the given vector . The
elements of the new vector are the same (in the sense of
eqv?) as the elements of the old.

The arguments start , end , and fill default to 0, the length
of vector , and an implementation-specified value respec-
tively. If end is greater than the length of vector , the fill
argument is used to fill the additional elements of the re-
sult.

(vector-fill! vector fill) procedure
(vector-fill! vector fill start end) procedure

If start and end are given, vector-fill! stores fill (which
can be any object) in all the elements of vector between
start (inclusive) and end (exclusive). It is an error if start
is less than end . If they are omitted, fill is stored in all the
elements of vector . In either case, an unspecified value is
returned.

6.9. Bytevectors

Bytevectors represent blocks of binary data. They are
fixed-length sequences of bytes, where a byte is an exact
integer in the range [0, 255]. A bytevector is typically more
space-efficient than a vector containing the same values.

The length of a bytevector is the number of elements that
it contains. This number is a non-negative integer that is
fixed when the bytevector is created. The valid indexes of
a bytevector are the exact non-negative integers less than
the length of the bytevector, starting at index zero as with
vectors.

Bytevectors are written using the notation #u8(byte . . . ).
For example, a bytevector of length 3 containing the byte
0 in element 0, the byte 10 in element 1, and the byte 5 in
element 2 can be written as following:

#u8(0 10 5)

Note that this is both the external representation of a
bytevector and an expression evaluating to a bytevector.

(bytevector? obj) procedure

Returns #t if obj is a bytevector. Otherwise, #f is returned.

(make-bytevector k) procedure
(make-bytevector k byte) procedure

The make-bytevector procedure returns a newly allocated
bytevector of length k. If byte is given, then all elements
of the bytevector are initialized to byte, otherwise the con-
tents of each element are unspecified.

(bytevector-length bytevector) procedure

Returns the length of bytevector in bytes as an exact inte-
ger.

(bytevector-u8-ref bytevector k) procedure

Returns the kth byte of bytevector .

(bytevector-u8-set! bytevector k byte) procedure

Stores byte as the kth byte of bytevector . The value re-
turned by bytevector-u8-set! is unspecified.

(bytevector-copy bytevector) procedure

Returns a newly allocated bytevector containing the same
bytes as bytevector .

(bytevector-copy! from to) procedure

Copies the bytes of bytevector from to bytevector to. It is
an error if to is shorter than from. The value returned by
bytevector-copy! is unspecified.

(bytevector-copy-partial bytevector start end)
procedure

Returns a newly allocated bytevector containing the bytes
in bytevector between start (inclusive) and end (exclusive).
It is an error if start is less than end , or start is less than
zero, or end is greater than the length of bytevector .

(bytevector-copy-partial! from start end to at)
procedure

Copies the bytes of bytevector from between start and end
to bytevector to, starting at at . The order in which bytes
are copied is unspecified, except that if the source and des-
tination overlap, copying takes place as if the source is first
copied into a temporary bytevector and then into the des-
tination. This can be achieved without allocating storage
by making sure to copy in the correct direction in such
circumstances.

It is an error if start is less than end , or start is less than
zero, or end is greater than the length of from, or to is
less than zero or greater than the length of to. It is also
an error if the inequality (>= (- (bytevector-length
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to) at) (- end start)) is false. The value returned by
bytevector-copy-partial! is unspecified.

(utf8->string bytevector) procedure
(string->utf8 string) procedure

These procedures translate between strings and bytevec-
tors that encode those strings using the UTF-8 encod-
ing. The utf8->string procedure decodes a bytevector
and returns the corresponding string; the string->utf8

procedure encodes a string and returns the corresponding
bytevector. It is an error to pass invalid byte sequences or
byte sequences representing characters which are forbidden
in strings to utf8->string.

(utf8->string #u8(#x41)) =⇒ "A"

(string->utf8 "λ") =⇒ #u8(#xCE #xBB)

6.10. Control features

This section describes various primitive procedures which
control the flow of program execution in special ways. The
procedure? predicate is also described here.

(procedure? obj) procedure

Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car) =⇒ #t

(procedure? ’car) =⇒ #f

(procedure? (lambda (x) (* x x)))

=⇒ #t

(procedure? ’(lambda (x) (* x x)))

=⇒ #f

(call-with-current-continuation procedure?)

=⇒ #t

(apply proc arg1 . . . args) procedure

The apply procedure calls proc with the elements of the list
(append (list arg1 . . . ) args) as the actual arguments.

(apply + (list 3 4)) =⇒ 7

(define compose

(lambda (f g)

(lambda args

(f (apply g args)))))

((compose sqrt *) 12 75) =⇒ 30

(map proc list1 list2 . . . ) procedure

It is an error if proc does not accept as many arguments as
there are lists and return a single value. The map procedure
applies proc element-wise to the elements of the lists and

returns a list of the results, in order. If more than one list is
given and not all lists have the same length, map terminates
when the shortest list runs out. It is an error for proc to
mutate any of the lists. The dynamic order in which proc
is applied to the elements of the lists is unspecified. If
multiple returns occur from map, the values returned by
earlier returns are not mutated.

(map cadr ’((a b) (d e) (g h)))

=⇒ (b e h)

(map (lambda (n) (expt n n))

’(1 2 3 4 5))

=⇒ (1 4 27 256 3125)

(map + ’(1 2 3) ’(4 5 6 7)) =⇒ (5 7 9)

(let ((count 0))

(map (lambda (ignored)

(set! count (+ count 1))

count)

’(a b))) =⇒ (1 2) or (2 1)

(string-map proc string1 string2 . . . ) procedure

It is an error if proc does not accept as many arguments
as there are strings and return a single character. The
string-map procedure applies proc element-wise to the el-
ements of the strings and returns a string of the results,
in order. If more than one string is given and not all
strings have the same length, string-map terminates when
the shortest string runs out. The dynamic order in which
proc is applied to the elements of the strings is unspecified.
If multiple returns occur from string-map, the values re-
turned by earlier returns are not mutated.

(string-map char-foldcase "AbdEgH")

=⇒ "abdegh"

(string-map

(lambda (c)

(integer->char (+ 1 (char->integer c))))

"HAL")

=⇒ "IBM"

(string-map

(lambda (c k)

((if (eqv? k #\u) char-upcase char-downcase)

c))

"studlycaps xxx"

"ululululul")

=⇒ "StUdLyCaPs"

(vector-map proc vector1 vector2 . . . ) procedure

It is an error if proc does not accept as many argu-
ments as there are vectors and return a single value. The
vector-map procedure applies proc element-wise to the el-
ements of the vectors and returns a vector of the results,
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in order. If more than one vector is given and not all vec-
tors have the same length, vector-map terminates when
the shortest vector runs out. The dynamic order in which
proc is applied to the elements of the vectors is unspeci-
fied. If multiple returns occur from vector-map, the values
returned by earlier returns are not mutated.

(vector-map cadr ’#((a b) (d e) (g h)))

=⇒ #(b e h)

(vector-map (lambda (n) (expt n n))

’#(1 2 3 4 5))

=⇒ #(1 4 27 256 3125)

(vector-map + ’#(1 2 3) ’#(4 5 6 7))

=⇒ #(5 7 9)

(let ((count 0))

(vector-map

(lambda (ignored)

(set! count (+ count 1))

count)

’#(a b))) =⇒ #(1 2) or #(2 1)

(for-each proc list1 list2 . . . ) procedure

The arguments to for-each are like the arguments to map,
but for-each calls proc for its side effects rather than for
its values. Unlike map, for-each is guaranteed to call proc
on the elements of the lists in order from the first ele-
ment(s) to the last, and the value returned by for-each

is unspecified. If more than one list is given and not all
lists have the same length, for-each terminates when the
shortest list runs out. It is an error for proc to mutate any
of the lists.

(let ((v (make-vector 5)))

(for-each (lambda (i)

(vector-set! v i (* i i)))

’(0 1 2 3 4))

v) =⇒ #(0 1 4 9 16)

(string-for-each proc string1 string2 . . . ) procedure

The arguments to string-for-each are like the arguments
to string-map, but string-for-each calls proc for its
side effects rather than for its values. Unlike string-map,
string-for-each is guaranteed to call proc on the ele-
ments of the lists in order from the first element(s) to
the last, and the value returned by string-for-each is
unspecified. If more than one string is given and not all
strings have the same length, string-for-each terminates
when the shortest string runs out. It is an error for proc
to mutate any of the strings.

(let ((v ’()))

(string-for-each

(lambda (c) (set! v (cons (char->integer c) v))

"abcde")

v) =⇒ (101 100 99 98 97)

(vector-for-each proc vector1 vector2 . . . ) procedure

The arguments to vector-for-each are like the arguments
to vector-map, but vector-for-each calls proc for its
side effects rather than for its values. Unlike vector-map,
vector-for-each is guaranteed to call proc on the ele-
ments of the vectors in order from the first element(s) to
the last, and the value returned by vector-for-each is un-
specified. If more than one vector is given and not all vec-
tors have the same length, vector-for-each terminates
when the shortest vector runs out. It is an error for proc
to mutate any of the vectors.

(let ((v (make-list 5)))

(vector-for-each

(lambda (i) (list-set! v i (* i i)))

’#(0 1 2 3 4))

v) =⇒ (0 1 4 9 16)

(call-with-current-continuation proc) procedure
(call/cc proc) procedure

It is an error if proc does not accept one argument.
The procedure call-with-current-continuation (or its
equivalent abbreviation call/cc) packages the current
continuation (see the rationale below) as an “escape pro-
cedure” and passes it as an argument to proc. The escape
procedure is a Scheme procedure that, if it is later called,
will abandon whatever continuation is in effect at that later
time and will instead use the continuation that was in ef-
fect when the escape procedure was created. Calling the
escape procedure may cause the invocation of before and
after thunks installed using dynamic-wind.

The escape procedure accepts the same number of ar-
guments as the continuation to the original call to
call-with-current-continuation. Except for continu-
ations created by the call-with-values procedure (in-
cluding the initialization expressions of let-values and
let*-values expressions), all continuations take exactly
one value. The effect of passing no value or more
than one value to continuations that were not created by
call-with-values is unspecified.

However, the continuations of all non-final expressions
within a sequence of expressions, such as in lambda,
case-lambda, begin, let, let*, letrec, letrec*,
let-values, let*-values, let-syntax, letrec-syntax,
parameterize, guard, case, cond, when, and unless ex-
pressions, take an arbitrary number of values, because they
discard the values passed to them in any event.

The escape procedure that is passed to proc has unlimited
extent just like any other procedure in Scheme. It can be
stored in variables or data structures and can be called as
many times as desired.

The following examples show only the simplest ways
in which call-with-current-continuation is used. If
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all real uses were as simple as these examples, there
would be no need for a procedure with the power of
call-with-current-continuation.

(call-with-current-continuation

(lambda (exit)

(for-each (lambda (x)

(if (negative? x)

(exit x)))

’(54 0 37 -3 245 19))

#t)) =⇒ -3

(define list-length

(lambda (obj)

(call-with-current-continuation

(lambda (return)

(letrec ((r

(lambda (obj)

(cond ((null? obj) 0)

((pair? obj)

(+ (r (cdr obj)) 1))

(else (return #f))))))

(r obj))))))

(list-length ’(1 2 3 4)) =⇒ 4

(list-length ’(a b . c)) =⇒ #f

Rationale:

A common use of call-with-current-continuation is for
structured, non-local exits from loops or procedure bodies, but
in fact call-with-current-continuation is useful for imple-
menting a wide variety of advanced control structures.

Whenever a Scheme expression is evaluated there is a contin-
uation wanting the result of the expression. The continuation
represents an entire (default) future for the computation. If the
expression is evaluated at top level, for example, then the con-
tinuation might take the result, print it on the screen, prompt
for the next input, evaluate it, and so on forever. Most of the
time the continuation includes actions specified by user code,
as in a continuation that will take the result, multiply it by the
value stored in a local variable, add seven, and give the answer
to the top level continuation to be printed. Normally these
ubiquitous continuations are hidden behind the scenes and pro-
grammers do not think much about them. On rare occasions,
however, a programmer needs to deal with continuations explic-
itly. The call-with-current-continuation procedure allows
Scheme programmers to do that by creating a procedure that
acts just like the current continuation.

Most programming languages incorporate one or more special-

purpose escape constructs with names like exit, return, or

even goto. In 1965, however, Peter Landin [23] invented a

general purpose escape operator called the J-operator. John

Reynolds [32] described a simpler but equally powerful con-

struct in 1972. The catch syntax described by Sussman and

Steele in the 1975 report on Scheme is exactly the same as

Reynolds’s construct, though its name came from a less general

construct in MacLisp. Several Scheme implementors noticed

that the full power of catch could be provided by a proce-

dure instead of by a special syntactic construct, and the name

call-with-current-continuation was coined in 1982. This

name is descriptive, but opinions differ on the merits of such a

long name, and some people prefer the name call/cc instead.

(values obj . . .) procedure

Delivers all of its arguments to its continuation. The
values procedure might be defined as follows:

(define (values . things)

(call-with-current-continuation

(lambda (cont) (apply cont things))))

(call-with-values producer consumer) procedure

Calls its producer argument with no values and a contin-
uation that, when passed some values, calls the consumer
procedure with those values as arguments. The continua-
tion for the call to consumer is the continuation of the call
to call-with-values.

(call-with-values (lambda () (values 4 5))

(lambda (a b) b))

=⇒ 5

(call-with-values * -) =⇒ -1

(dynamic-wind before thunk after) procedure

Calls thunk without arguments, returning the result(s) of
this call. Before and after are called, also without ar-
guments, as required by the following rules. Note that,
in the absence of calls to continuations captured using
call-with-current-continuation, the three arguments
are called once each, in order. Before is called when-
ever execution enters the dynamic extent of the call to
thunk and after is called whenever it exits that dynamic
extent. The dynamic extent of a procedure call is the pe-
riod between when the call is initiated and when it returns.
Before and after are excluded from the dynamic extent. In
Scheme, because of call-with-current-continuation,
the dynamic extent of a call is not always a single, con-
nected time period. It is defined as follows:

• The dynamic extent is entered when execution of the
body of the called procedure begins.

• The dynamic extent is also entered when exe-
cution is not within the dynamic extent and a
continuation is invoked that was captured (using
call-with-current-continuation) during the dy-
namic extent.

• It is exited when the called procedure returns.
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• It is also exited when execution is within the dynamic
extent and a continuation is invoked that was captured
while not within the dynamic extent.

If a second call to dynamic-wind occurs within the dynamic
extent of the call to thunk and then a continuation is in-
voked in such a way that the afters from these two invoca-
tions of dynamic-wind are both to be called, then the after
associated with the second (inner) call to dynamic-wind is
called first.

If a second call to dynamic-wind occurs within the dy-
namic extent of the call to thunk and then a continua-
tion is invoked in such a way that the befores from these
two invocations of dynamic-wind are both to be called,
then the before associated with the first (outer) call to
dynamic-wind is called first.

If invoking a continuation requires calling the before from
one call to dynamic-wind and the after from another, then
the after is called first.

The effect of using a captured continuation to enter or exit
the dynamic extent of a call to before or after is unspecified.

(let ((path ’())

(c #f))

(let ((add (lambda (s)

(set! path (cons s path)))))

(dynamic-wind

(lambda () (add ’connect))

(lambda ()

(add (call-with-current-continuation

(lambda (c0)

(set! c c0)

’talk1))))

(lambda () (add ’disconnect)))

(if (< (length path) 4)

(c ’talk2)

(reverse path))))

=⇒ (connect talk1 disconnect

connect talk2 disconnect)

6.11. Exceptions

This section describes Scheme’s exception-handling and
exception-raising procedures. For the concept of Scheme
exceptions, see section 1.3.2. See also 4.2.7 for the guard

syntax.

Exception handlers are one-argument procedures that de-
termine the action the program takes when an exceptional
situation is signalled. The system implicitly maintains a
current exception handler.

The program raises an exception by invoking the current
exception handler, passing it an object encapsulating in-
formation about the exception. Any procedure accepting

one argument may serve as an exception handler and any
object may be used to represent an exception.

(with-exception-handler handler thunk) procedure

It is an error if handler does not accept one argument. It
is also an error if thunk does not accept zero arguments.
The with-exception-handler procedure returns the re-
sults of invoking thunk . Handler is installed as the current
exception handler for the dynamic extent (as determined
by dynamic-wind) of the invocation of thunk .

(raise obj) procedure

Raises an exception by invoking the current exception han-
dler on obj . The handler is called with a continuation
whose dynamic extent is that of the call to raise, except
that the current exception handler is the one that was in
place when the handler being called was installed. If the
handler returns, an exception is raised in the same dynamic
extent as the handler.

(raise-continuable obj) procedure

Raises an exception by invoking the current exception
handler on obj . The handler is called with a continu-
ation that is equivalent to the continuation of the call
to raise-continuable, except that: (1) the current ex-
ception handler is the one that was in place when the
handler being called was installed, and (2) if the handler
being called returns, then it will again become the cur-
rent exception handler. If the handler returns, the val-
ues it returns become the values returned by the call to
raise-continuable.

(with-exception-handler

(lambda (con)

(cond

((string? con)

(display con))

(else

(display "a warning has been issued")))

42)

(lambda ()

(+ (raise-continuable "should be a number")

23)))

prints: should be a number

=⇒ 65

(error message obj . . .) procedure

Message should be a string. Raises an exception as if by
calling raise on a newly allocated implementation-defined
object which encapsulates the information provided by
message, as well as any obj s, known as the irritants. The
procedure error-object? must return #t on such objects.
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(define (null-list? l)

(cond ((pair? l) #f)

((null? l) #t)

(else

(error

"null-list?: argument out of domain"

l))))

(error-object? obj) procedure

Returns #t if obj is an object created by error or one
of an implementation-defined set of objects. Otherwise, it
returns #f.

(error-object-message error-object) procedure

Returns the message encapsulated by error-object .

(error-object-irritants error-object) procedure

Returns a list of the irritants encapsulated by error-object .

6.12. Eval

(eval expression environment-specifier)
eval library procedure

Evaluates expression in the specified environment and re-
turns its value. It is an error if expression is not a valid
Scheme expression represented as a datum. Implementa-
tions may extend eval to allow non-expression programs
such as definitions as the first argument, with the re-
striction that eval is not allowed to create new bindings
in the environments returned by null-environment or
scheme-report-environment.

(eval ’(* 7 3) (scheme-report-environment 7))

=⇒ 21

(let ((f (eval ’(lambda (f x) (f x x))

(null-environment 7))))

(f + 10))

=⇒ 20

(scheme-report-environment version)
eval library procedure

If version is equal to 7, corresponding to this revision
of the Scheme report (the Revised7 Report on Scheme),
scheme-report-environment returns a specifier for an en-
vironment that contains only the bindings defined either in
the base library or in the other libraries of this report that
the implementation supports. Implementations must sup-
port this value of version.

Implementations may also support other values of version,
in which case they should return an environment contain-
ing bindings corresponding to the corresponding version of
the report. If version is neither 7 nor another value sup-
ported by the implementation, an error is signalled.

The effect of assigning (through the use of eval) a vari-
able bound in a scheme-report-environment (for exam-
ple car) is unspecified. Thus the environments specified
by scheme-report-environment may be immutable.

(null-environment version) eval library procedure

If version is equal to 7, corresponding to this revision of
the Scheme report (the Revised7 Report on Scheme), the
null-environment procedure returns a specifier for an en-
vironment that contains only the bindings for all syntactic
keywords defined either in the base library or in the other
libraries of this report, provided that the implementation
supports them. Implementations must support this value
of version.

Implementations may also support other values of version,
in which case they should return an environment contain-
ing bindings corresponding to the corresponding version of
the report. If version is neither 7 nor another value sup-
ported by the implementation, an error is signalled.

(environment list1 . . . ) eval library procedure

This procedure returns a specifier for the environment that
results by starting with an empty environment and then
importing each list , considered as an import set, into it.
(See section 5.5 for a description of import sets.) The
bindings of the environment represented by the specifier
are immutable.

(interaction-environment) repl library procedure

This procedure returns a specifier for an environment that
contains an implementation-defined set of bindings, typi-
cally a superset of those exported by (scheme base). The
intent is that this procedure will return the environment
in which the implementation would evaluate expressions
entered by the user into a REPL.

6.13. Input and output

6.13.1. Ports

Ports represent input and output devices. To Scheme, an
input port is a Scheme object that can deliver data upon
command, while an output port is a Scheme object that can
accept data. Whether the input and output port types are
disjoint is implementation-dependent.
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Different port types operate on different data. Scheme
implementations are required to support textual ports and
binary ports, but may also provide other port types.

A textual port supports reading or writing of individual
characters from or to a backing store containing charac-
ters using read-char and write-char below, as well as
operations defined in terms of characters such as read and
write.

A binary port supports reading or writing of individual
bytes from or to a backing store containing bytes using
read-u8 and write-u8 below, as well as operations defined
in terms of bytes. Whether the textual and binary port
types are disjoint is implementation-dependent.

Ports can be used to access files, devices, and similar things
on the host system on which the Scheme program is run-
ning.

(call-with-input-file string proc)
file library procedure

(call-with-output-file string proc)
file library procedure

It is an error if proc does not accept one argument. For
call-with-input-file, the file named by string should
already exist; for call-with-output-file, the effect is
unspecified if the file already exists. These procedures
call proc with one argument: the textual port obtained
by opening the named file for input or output as if by
open-input-file or open-output-file. If the file can-
not be opened, an error is signalled. If proc returns, then
the port is closed automatically and the values yielded by
the proc are returned. If proc does not return, then the
port must not be closed automatically unless it is possible
to prove that the port will never again be used for a read
or write operation.

Rationale: Because Scheme’s escape procedures have un-

limited extent, it is possible to escape from the current con-

tinuation but later to escape back in. If implementations

were permitted to close the port on any escape from the

current continuation, then it would be impossible to write

portable code using both call-with-current-continuation

and call-with-input-file or call-with-output-file.

(call-with-port port proc) procedure

It is an error if proc does not accept one argument. The
call-with-port procedure calls proc with port as an ar-
gument. If proc returns, port is closed automatically and
the values returned by proc are returned.

(input-port? obj) procedure
(output-port? obj) procedure
(textual-port? obj) procedure

(binary-port? obj) procedure
(port? obj) procedure

These procedures return #t if obj is an input port, out-
put port, textual port, binary port, or any kind of port,
respectively. Otherwise they return #f.

(port-open? port) procedure

Returns #t if port is still open and capable of performing
input or output, and #f otherwise.

(current-input-port) procedure
(current-output-port) procedure
(current-error-port) procedure

Returns the current default input port, output port, or
error port (an output port), respectively. These proce-
dures are parameter objects, which can be overridden with
parameterize (see section 4.2.6). The initial bindings for
these are system-defined textual ports.

(with-input-from-file string thunk)
file library procedure

(with-output-to-file string thunk)
file library procedure

For with-input-from-file, it is an error if the
file named by string does not already exist; for
with-output-to-file, the effect is unspecified if the file
already exists. The file is opened for input or out-
put as if by open-input-file or open-output-file,
and the new port is made the default value returned
by current-input-port or current-output-port (and is
used by (read), (write obj), and so forth). The thunk is
then called with no arguments. When the thunk returns,
the port is closed and the previous default is restored. It
is an error if thunk does not accept zero arguments. Both
procedures return the values yielded by thunk . If an escape
procedure is used to escape from the continuation of these
procedures, their behavior is implementation-dependent.

(open-input-file string) file library procedure
(open-binary-input-file string) file library procedure

Takes a string for an existing file and returns a textual
input port or binary input port capable of delivering data
from the file. If the file cannot be opened, an error is
signalled.

(open-output-file string) file library procedure
(open-binary-output-file string)

file library procedure

Takes a string naming an output file to be created and
returns a textual output port or binary output port capable
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of writing data to a new file by that name. If the file cannot
be opened, an error is signalled. If a file with the given
name already exists, the effect is unspecified.

(close-port port) procedure
(close-input-port port) procedure
(close-output-port port) procedure

Closes the resource associated with port , rendering the port
incapable of delivering or accepting data. It is an error to
apply the last two procedures to a port which is not an
input or output port, respectively. Scheme implementa-
tions may provide ports which are simultaneously input
and output ports, such as sockets; the close-input-port

and close-output-port procedures can then be used to
close the input and output sides of the port independently.

These routines have no effect if the file has already been
closed. The value returned is unspecified.

(open-input-string string) procedure

Takes a string and returns a textual input port that delivers
characters from the string.

(open-output-string) procedure

Returns a textual output port that will accumulate char-
acters for retrieval by get-output-string.

(get-output-string port) procedure

It is an error if port was not created with
open-output-string. Returns a string consisting of
the characters that have been output to the port so far in
the order they were output.

(open-input-bytevector bytevector) procedure

Takes a bytevector and returns a binary input port that
delivers bytes from the bytevector.

(open-output-bytevector) procedure

Returns a binary output port that will accumulate bytes
for retrieval by get-output-bytevector.

(get-output-bytevector port) procedure

It is an error if port was not created with
open-output-bytevector. Returns a bytevector consist-
ing of the bytes that have been output to the port so far
in the order they were output.

6.13.2. Input

(read) read library procedure
(read port) read library procedure

The read procedure converts external representations of
Scheme objects into the objects themselves. That is, it is
a parser for the nonterminal 〈datum〉 (see sections 7.1.2
and 6.4). It returns the next object parsable from the
given textual input port , updating port to point to the
first character past the end of the external representation
of the object.

If an end of file is encountered in the input before any char-
acters are found that can begin an object, then an end-of-
file object is returned. The port remains open, and further
attempts to read will also return an end-of-file object. If an
end of file is encountered after the beginning of an object’s
external representation, but the external representation is
incomplete and therefore not parsable, an error is signalled.

Port may be omitted, in which case it defaults to the value
returned by current-input-port. It is an error to read
from a closed port.

(read-char) procedure
(read-char port) procedure

Returns the next character available from the textual input
port , updating the port to point to the following character.
If no more characters are available, an end-of-file object is
returned. Port may be omitted, in which case it defaults
to the value returned by current-input-port.

(peek-char) procedure
(peek-char port) procedure

Returns the next character available from the textual input
port , without updating the port to point to the following
character. If no more characters are available, an end-of-
file object is returned. Port may be omitted, in which case
it defaults to the value returned by current-input-port.

Note: The value returned by a call to peek-char is the same as

the value that would have been returned by a call to read-char

with the same port . The only difference is that the very next call

to read-char or peek-char on that port will return the value

returned by the preceding call to peek-char. In particular, a

call to peek-char on an interactive port will hang waiting for

input whenever a call to read-char would have hung.

(read-line) procedure
(read-line port) procedure

Returns the next line of text available from the textual
input port , updating the port to point to the following
character. If an end of line is read, a string containing all
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of the text up to (but not including) the end of line is re-
turned, and the port is updated to point just past the end
of line. If an end of file is encountered before any end of
line is read, but some characters have been read, a string
containing those characters is returned. If an end of file is
encountered before any characters are read, an end-of-file
object is returned. For the purpose of this procedure, an
end of line consists of either a linefeed character, a carriage
return character, or a sequence of a carriage return charac-
ter followed by a linefeed character. Implementations may
also recognize other end of line characters or sequences.
Port may be omitted, in which case it defaults to the value
returned by current-input-port.

(eof-object? obj) procedure

Returns #t if obj is an end-of-file object, otherwise returns
#f. The precise set of end-of-file objects will vary among
implementations, but in any case no end-of-file object will
ever be an object that can be read in using read.

(char-ready?) procedure
(char-ready? port) procedure

Returns #t if a character is ready on the textual in-
put port and returns #f otherwise. If char-ready re-
turns #t then the next read-char operation on the given
port is guaranteed not to hang. If the port is at end of
file then char-ready? returns #t. Port may be omit-
ted, in which case it defaults to the value returned by
current-input-port.

Rationale: The char-ready? procedure exists to make it pos-

sible for a program to accept characters from interactive ports

without getting stuck waiting for input. Any input editors as-

sociated with such ports must ensure that characters whose

existence has been asserted by char-ready? cannot be removed

from the input. If char-ready? were to return #f at end of

file, a port at end-of-file would be indistinguishable from an

interactive port that has no ready characters.

(read-u8) procedure
(read-u8 port) procedure

Returns the next byte available from the binary input port ,
updating the port to point to the following byte. If no
more bytes are available, an end-of-file object is returned.
Port may be omitted, in which case it defaults to the value
returned by current-input-port.

(peek-u8) procedure
(peek-u8 port) procedure

Returns the next byte available from the binary input port ,
without updating the port to point to the following byte.

If no more bytes are available, an end-of-file object is re-
turned. Port may be omitted, in which case it defaults to
the value returned by current-input-port.

(u8-ready?) procedure
(u8-ready? port) procedure

Returns #t if a byte is ready on the binary input port and
returns #f otherwise. If u8-ready? returns #t then the
next read-u8 operation on the given port is guaranteed
not to hang. If the port is at end of file then u8-ready?

returns #t. Port may be omitted, in which case it defaults
to the value returned by current-input-port.

(read-bytevector length) procedure
(read-bytevector length port) procedure

Reads the next length bytes, or as many as are available
before the end of file, from the binary input port into a
newly allocated bytevector in left-to-right order and re-
turns the bytevector. If no bytes are available before the
end of file, an end-of-file object is returned. Port may be
omitted, in which case it defaults to the value returned by
current-input-port.

(read-bytevector! bytevector start end) procedure
(read-bytevector! bytevector start end port)

procedure

Reads the next end− start bytes, or as many as are avail-
able before the end of file, from the binary input port into
bytevector in left-to-right order beginning at the start po-
sition. Returns the number of bytes read. If no bytes are
available, an end-of-file object is returned. Port may be
omitted, in which case it defaults to the value returned by
current-input-port.

6.13.3. Output

(write obj) write library procedure
(write obj port) write library procedure

Writes a representation of obj to the given textual output
port . Strings that appear in the written representation are
enclosed in double quotes, and within those strings back-
slash and double quote characters are escaped by back-
slashes. Symbols that contain non-ASCII characters are
escaped either with inline hex escapes or with vertical
bars. Character objects are written using the #\ nota-
tion. Shared list structure is represented using datum la-
bels. The write procedure returns an unspecified value.
Port may be omitted, in which case it defaults to the value
returned by current-output-port.
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(write-simple obj) write library procedure
(write-simple obj port) write library procedure

The write-simple procedure is the same as write, ex-
cept that shared structure is not represented using datum
labels. This may cause write-simple not to terminate if
obj contains circular structure.

(display obj) write library procedure
(display obj port) write library procedure

Writes a representation of obj to the given textual output
port . Strings that appear in the written representation
are not enclosed in double quotes, and no characters are
escaped within those strings. Symbols are not escaped.
Character objects appear in the representation as if writ-
ten by write-char instead of by write. The display pro-
cedure returns an unspecified value. Port may be omit-
ted, in which case it defaults to the value returned by
current-output-port.

Rationale: The write procedure is intended for producing

machine-readable output and display for producing human-

readable output.

(newline) procedure
(newline port) procedure

Writes an end of line to textual output port . Exactly
how this is done differs from one operating system to an-
other. Returns an unspecified value. Port may be omit-
ted, in which case it defaults to the value returned by
current-output-port.

(write-char char) procedure
(write-char char port) procedure

Writes the character char (not an external representa-
tion of the character) to the given textual output port
and returns an unspecified value. Port may be omit-
ted, in which case it defaults to the value returned by
current-output-port.

(write-u8 byte) procedure
(write-u8 byte port) procedure

Writes the byte to the given binary output port and returns
an unspecified value. Port may be omitted, in which case
it defaults to the value returned by current-output-port.

(write-bytevector bytevector) procedure
(write-bytevector bytevector port) procedure

Writes the bytes of bytevector in left-to-right order to the
binary output port . Port may be omitted, in which case it
defaults to the value returned by current-output-port.

(write-partial-bytevector bytevector start end)
procedure

(write-partial-bytevector bytevector start end port)
procedure

Writes the bytes of bytevector from start (inclusive) to end
(exclusive) in left-to-right order to the binary output port .
Port may be omitted, in which case it defaults to the value
returned by current-output-port.

(flush-output-port) procedure
(flush-output-port port) procedure

Flushes any buffered output from the buffer of output-port
to the underlying file or device and returns an unspecified
value. Port may be omitted, in which case it defaults to
the value returned by current-output-port.

6.13.4. System interface

Questions of system interface generally fall outside of the
domain of this report. However, the following operations
are important enough to deserve description here.

(load filename) load library procedure
(load filename environment-specifier)

load library procedure

An implementation-dependent operation is used to trans-
form filename into the name of an existing file con-
taining Scheme source code. The load procedure reads
expressions and definitions from the file and evalu-
ates them sequentially in the environment specified by
environment-specifier . If environment-specifier is omitted,
(interaction-environment) is assumed.

It is unspecified whether the results of the expres-
sions are printed. The load procedure does not af-
fect the values returned by current-input-port and
current-output-port. It returns an unspecified value.

Rationale: For portability, load must operate on source files.

Its operation on other kinds of files necessarily varies among

implementations.

(file-exists? filename) file library procedure

It is an error if filename is not a string. The file-exists?
procedure returns #t if the named file exists at the time
the procedure is called, and #f otherwise.

(delete-file filename) file library procedure

It is an error if filename is not a string. The delete-file

procedure deletes the named file if it exists and can be
deleted, and returns an unspecified value. If the file does
not exist or cannot be deleted, an error is signalled.
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(command-line) process-context library procedure

Returns the command line passed to the process as a list
of strings. The first string corresponds to the command
name, and is implementation-dependent. It is an error to
mutate any of these strings.

(exit) process-context library procedure
(exit obj) process-context library procedure

Exits the running program and communicates an exit value
to the operating system. If no argument is supplied, the
exit procedure should communicate to the operating sys-
tem that the program exited normally. If an argument is
supplied, the exit procedure should translate the argument
into an appropriate exit value for the operating system. If
obj is #f, the exit is assumed to be abnormal.

(get-environment-variable name)
process-context library procedure

Most operating systems provide each running process
with an environment consisting of environment vari-
ables. (This environment is not to be confused with
the Scheme environments that can be passed to eval:
see section 6.12.) Both the name and value of
an environment variable are strings. The procedure
get-environment-variable returns the value of the en-
vironment variable name, or #f if the named environment
variable is not found. get-environment-variable may
use locale-setting information to encode the name and de-
code the value of the environment variable. It is an error
if get-environment-variable can’t decode the value. It
is also an error to mutate the resulting string.

(get-environment-variable "PATH")

=⇒ "/usr/local/bin:/usr/bin:/bin"

(get-environment-variables)

process-context library procedure

Returns the names and values of all the environment vari-
ables as an alist, where the car of each entry is the name
of an environment variable and the cdr is its value, both as
strings. The order of the list is unspecified. It is an error
to mutate any of these strings.

(get-environment-variables)

=⇒ (("USER" . "root") ("HOME" . "/"))

(current-second) time library procedure

Returns an inexact number representing the current time
on the International Atomic Time (TAI) scale. The value
0.0 represents ten seconds after midnight on January 1,

1970 TAI (equivalent to midnight Universal Time) and the
value 1.0 represents one TAI second later. Neither high
accuracy nor high precision are required; in particular, re-
turning Coordinated Universal Time plus a suitable con-
stant may be the best an implementation can do.

(current-jiffy) time library procedure

Returns the number of jiffies as an exact integer that
have elapsed since an arbitrary, implementation-defined
epoch. A jiffy is an implementation-defined fraction of
a second which is defined by the return value of the
jiffies-per-second procedure. The starting epoch is
guaranteed to be constant during a run of the program,
but may vary between different runs.

(jiffies-per-second) time library procedure

Returns an exact integer representing the number of jiffies
per SI second. This value is an implementation-specified
constant.

(define (time-length)

(let ((list (make-list 100000))

(start (current-jiffy)))

(length list)

(/ (- (current-jiffy) start)

(jiffies-per-second))))
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7. Formal syntax and semantics

This chapter provides formal descriptions of what has al-
ready been described informally in previous chapters of this
report.

7.1. Formal syntax

This section provides a formal syntax for Scheme written
in an extended BNF.

All spaces in the grammar are for legibility. Case is insignif-
icant; for example, #x1A and #X1a are equivalent. 〈empty〉
stands for the empty string.

The following extensions to BNF are used to make the de-
scription more concise: 〈thing〉* means zero or more occur-
rences of 〈thing〉; and 〈thing〉+ means at least one 〈thing〉.

7.1.1. Lexical structure

This section describes how individual tokens (identifiers,
numbers, etc.) are formed from sequences of characters.
The following sections describe how expressions and pro-
grams are formed from sequences of tokens.

〈Intertoken space〉 may occur on either side of any token,
but not within a token.

Identifiers that do not begin with a vertical bar are termi-
nated by a 〈delimiter〉 or by the end of the input. So are
dot, numbers, characters, and booleans. Identifiers that
begin with a vertical bar are terminated by another verti-
cal bar.

The following four characters from the ASCII repertoire
are reserved for future extensions to the language: [ ] {

}

In addition to the identifier characters of the ASCII reper-
toire specified below, Scheme implementations may permit
any additional repertoire of Unicode characters to be em-
ployed in identifiers, provided that each such character has
a Unicode general category of Lu, Ll, Lt, Lm, Lo, Mn, Mc,
Me, Nd, Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co, or is
U+200C or U+200D (the zero-width non-joiner and joiner,
respectively, which are needed for correct spelling in Per-
sian, Hindi, and other languages). It is an error to use a
non-Unicode character in symbols or identifiers.

All Scheme implementations must permit the escape se-
quence \x<hexdigits>; to appear in Scheme identifiers.
If the character with the given Unicode scalar value is sup-
ported by the implementation, identifiers containing such
a sequence are equivalent to identifiers containing the cor-
responding character.

〈token〉 −→ 〈identifier〉 | 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉

| ( | ) | #( | #u8( | ’ | ` | , | ,@ | .
〈delimiter〉 −→ 〈whitespace〉 | ( | ) | " | ;| |
〈intraline whitespace〉 −→ 〈space or tab〉
〈whitespace〉 −→ 〈intraline whitespace〉 | 〈newline〉

| 〈return〉
〈comment〉 −→ ; 〈all subsequent characters up to a

line break〉
| 〈nested comment〉
| #; 〈atmosphere〉 〈datum〉

〈nested comment〉 −→ #| 〈comment text〉
〈comment cont〉* |#

〈comment text〉 −→ 〈character sequence not containing
#| or |#〉

〈comment cont〉 −→ 〈nested comment〉 〈comment text〉
〈atmosphere〉 −→ 〈whitespace〉 | 〈comment〉
〈intertoken space〉 −→ 〈atmosphere〉*

Note that +i, -i and 〈infinity〉 below are exceptions to the
〈peculiar identifier〉 rule; they are parsed as numbers, not
identifiers.

〈identifier〉 −→ 〈initial〉 〈subsequent〉*
| 〈vertical bar〉 〈symbol element〉* 〈vertical bar〉
| 〈peculiar identifier〉

〈initial〉 −→ 〈letter〉 | 〈special initial〉
| 〈inline hex escape〉

〈letter〉 −→ a | b | c | ... | z
| A | B | C | ... | Z

〈special initial〉 −→ ! | $ | % | & | * | / | : | < | =
| > | ? | ^ | _ | ~

〈subsequent〉 −→ 〈initial〉 | 〈digit〉
| 〈special subsequent〉

〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈hex digit〉 −→ 〈digit〉

| a | A | b | B | c | C | d | D | e | E | f | F
〈explicit sign〉 −→ + | -
〈special subsequent〉 −→ 〈explicit sign〉 | . | @
〈inline hex escape〉 −→ \x〈hex scalar value〉;
〈hex scalar value〉 −→ 〈hex digit〉+
〈peculiar identifier〉 −→ 〈explicit sign〉

| 〈explicit sign〉 〈sign subsequent〉 〈subsequent〉*
| 〈explicit sign〉 . 〈dot subsequent〉 〈subsequent〉*
| . 〈non-digit〉 〈subsequent〉*

〈non-digit〉 −→ 〈dot subsequent〉 | 〈explicit sign〉
〈dot subsequent〉 −→ 〈sign subsequent〉 | .
〈sign subsequent〉 −→ 〈initial〉 | 〈explicit sign〉 | @
〈symbol element〉 −→

〈any character other than 〈vertical bar〉 or \〉
| 〈hex inline escape〉

〈boolean〉 −→ #t | #f | #true | #false

〈character〉 −→ #\ 〈any character〉
| #\ 〈character name〉
| #\x〈hex scalar value〉

〈character name〉 −→ alarm | backspace | delete
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| escape | newline | null | return | space | tab

〈string〉 −→ " 〈string element〉* "

〈string element〉 −→ 〈any character other than " or \〉
| \a | \b | \t | \n | \r | \" | \\
| \〈intraline whitespace〉〈line ending〉
〈intraline whitespace〉
| 〈inline hex escape〉

〈bytevector〉 −→ #u8(〈byte〉*)
〈byte〉 −→ 〈any exact integer between 0 and 255〉

〈number〉 −→ 〈num 2〉 | 〈num 8〉
| 〈num 10〉 | 〈num 16〉

The following rules for 〈num R〉, 〈complex R〉, 〈real R〉,
〈ureal R〉, 〈uinteger R〉, and 〈prefix R〉 are implicitly repli-
cated for R = 2, 8, 10, and 16. There are no rules for
〈decimal 2〉, 〈decimal 8〉, and 〈decimal 16〉, which means
that numbers containing decimal points or exponents are
always in decimal radix. Although not shown below, all al-
phabetic characters used in the grammar of numbers may
appear in either upper or lower case.

〈num R〉 −→ 〈prefix R〉 〈complex R〉
〈complex R〉 −→ 〈real R〉 | 〈real R〉 @ 〈real R〉

| 〈real R〉 + 〈ureal R〉 i | 〈real R〉 - 〈ureal R〉 i

| 〈real R〉 + i | 〈real R〉 - i | 〈real R〉 〈infinity〉 i

| + 〈ureal R〉 i | - 〈ureal R〉 i

| 〈infinity〉 i | + i | - i

〈real R〉 −→ 〈sign〉 〈ureal R〉
| 〈infinity〉

〈ureal R〉 −→ 〈uinteger R〉
| 〈uinteger R〉 / 〈uinteger R〉
| 〈decimal R〉

〈decimal 10〉 −→ 〈uinteger 10〉 〈suffix〉
| . 〈digit 10〉+ 〈suffix〉
| 〈digit 10〉+ . 〈digit 10〉* 〈suffix〉

〈uinteger R〉 −→ 〈digit R〉+
〈prefix R〉 −→ 〈radix R〉 〈exactness〉

| 〈exactness〉 〈radix R〉
〈infinity〉 −→ +inf.0 | -inf.0 | +nan.0

〈suffix〉 −→ 〈empty〉
| 〈exponent marker〉 〈sign〉 〈digit 10〉+

〈exponent marker〉 −→ e | s | f | d | l
〈sign〉 −→ 〈empty〉 | + | -
〈exactness〉 −→ 〈empty〉 | #i | #e
〈radix 2〉 −→ #b

〈radix 8〉 −→ #o

〈radix 10〉 −→ 〈empty〉 | #d
〈radix 16〉 −→ #x

〈digit 2〉 −→ 0 | 1
〈digit 8〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
〈digit 10〉 −→ 〈digit〉
〈digit 16〉 −→ 〈digit 10〉 | a | b | c | d | e | f

7.1.2. External representations

〈Datum〉 is what the read procedure (section 6.13.2) suc-
cessfully parses. Note that any string that parses as an
〈expression〉 will also parse as a 〈datum〉.

〈datum〉 −→ 〈simple datum〉 | 〈compound datum〉
| 〈label〉 = 〈datum〉 | 〈label〉 #

〈simple datum〉 −→ 〈boolean〉 | 〈number〉
| 〈character〉 | 〈string〉 | 〈symbol〉 | 〈bytevector〉

〈symbol〉 −→ 〈identifier〉
〈compound datum〉 −→ 〈list〉 | 〈vector〉
〈list〉 −→ (〈datum〉*) | (〈datum〉+ . 〈datum〉)

| 〈abbreviation〉
〈abbreviation〉 −→ 〈abbrev prefix〉 〈datum〉
〈abbrev prefix〉 −→ ’ | ` | , | ,@
〈vector〉 −→ #(〈datum〉*)
〈label〉 −→ # 〈digit 10〉+

7.1.3. Expressions

The definitions in this and the following subsections assume
that all the syntax keywords defined in this report have
been properly imported from their libraries, and that none
of them have been redefined or shadowed.

〈expression〉 −→ 〈identifier〉
| 〈literal〉
| 〈procedure call〉
| 〈lambda expression〉
| 〈conditional〉
| 〈assignment〉
| 〈derived expression〉
| 〈macro use〉
| 〈macro block〉

〈literal〉 −→ 〈quotation〉 | 〈self-evaluating〉
〈self-evaluating〉 −→ 〈boolean〉 | 〈number〉

| 〈character〉 | 〈string〉 | 〈bytevector〉
〈quotation〉 −→ ’〈datum〉 | (quote 〈datum〉)
〈procedure call〉 −→ (〈operator〉 〈operand〉*)
〈operator〉 −→ 〈expression〉
〈operand〉 −→ 〈expression〉

〈lambda expression〉 −→ (lambda 〈formals〉 〈body〉)
〈formals〉 −→ (〈identifier〉*) | 〈identifier〉

| (〈identifier〉+ . 〈identifier〉)
〈body〉 −→ 〈definition〉* 〈sequence〉
〈sequence〉 −→ 〈command〉* 〈expression〉
〈command〉 −→ 〈expression〉

〈conditional〉 −→ (if 〈test〉 〈consequent〉 〈alternate〉)
〈test〉 −→ 〈expression〉
〈consequent〉 −→ 〈expression〉
〈alternate〉 −→ 〈expression〉 | 〈empty〉
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〈assignment〉 −→ (set! 〈identifier〉 〈expression〉)

〈derived expression〉 −→
(cond 〈cond clause〉+)
| (cond 〈cond clause〉* (else 〈sequence〉))
| (case 〈expression〉
〈case clause〉+)

| (case 〈expression〉
〈case clause〉*
(else 〈sequence〉))

| (case 〈expression〉
〈case clause〉*
(else => 〈recipient〉))

| (and 〈test〉*)
| (or 〈test〉*)
| (when 〈expression〉 〈test〉 〈sequence〉)
| (unless 〈expression〉 〈test〉 〈sequence〉)
| (let (〈binding spec〉*) 〈body〉)
| (let 〈identifier〉 (〈binding spec〉*) 〈body〉)
| (let* (〈binding spec〉*) 〈body〉)
| (letrec (〈binding spec〉*) 〈body〉)
| (letrec* (〈binding spec〉*) 〈body〉)
| (let-values (〈mv binding spec〉*) 〈body〉)
| (let*-values (〈mv binding spec〉*) 〈body〉)
| (begin 〈sequence〉)
| (do (〈iteration spec〉*)

(〈test〉 〈do result〉)
〈command〉*)

| (delay 〈expression〉)
| (lazy 〈expression〉)
| (parameterize (〈expression〉 〈expression〉)*
〈body〉)

| (guard (〈identifier〉 〈cond clause〉*) 〈body〉)
| 〈quasiquotation〉
| (case-lambda 〈case-lambda clause〉*)

〈cond clause〉 −→ (〈test〉 〈sequence〉)
| (〈test〉)
| (〈test〉 => 〈recipient〉)

〈recipient〉 −→ 〈expression〉
〈case clause〉 −→ ((〈datum〉*) 〈sequence〉)

| ((〈datum〉*) => 〈recipient〉)
〈binding spec〉 −→ (〈identifier〉 〈expression〉)
〈mv binding spec〉 −→ (〈formals〉 〈expression〉)
〈iteration spec〉 −→ (〈identifier〉 〈init〉 〈step〉)

| (〈identifier〉 〈init〉)
〈case-lambda clause〉 −→ (〈formals〉 〈body〉)
〈init〉 −→ 〈expression〉
〈step〉 −→ 〈expression〉
〈do result〉 −→ 〈sequence〉 | 〈empty〉

〈macro use〉 −→ (〈keyword〉 〈datum〉*)
〈keyword〉 −→ 〈identifier〉

〈macro block〉 −→

(let-syntax (〈syntax spec〉*) 〈body〉)
| (letrec-syntax (〈syntax spec〉*) 〈body〉)

〈syntax spec〉 −→ (〈keyword〉 〈transformer spec〉)

7.1.4. Quasiquotations

The following grammar for quasiquote expressions is not
context-free. It is presented as a recipe for generating an
infinite number of production rules. Imagine a copy of the
following rules for D = 1, 2, 3, . . .. D keeps track of the
nesting depth.

〈quasiquotation〉 −→ 〈quasiquotation 1〉
〈qq template 0〉 −→ 〈expression〉
〈quasiquotation D〉 −→ `〈qq template D〉

| (quasiquote 〈qq template D〉)
〈qq template D〉 −→ 〈simple datum〉

| 〈list qq template D〉
| 〈vector qq template D〉
| 〈unquotation D〉

〈list qq template D〉 −→ (〈qq template or splice D〉*)
| (〈qq template or splice D〉+ . 〈qq template D〉)
| ’〈qq template D〉
| 〈quasiquotation D + 1〉

〈vector qq template D〉 −→ #(〈qq template or splice D〉*)
〈unquotation D〉 −→ ,〈qq template D − 1〉

| (unquote 〈qq template D − 1〉)
〈qq template or splice D〉 −→ 〈qq template D〉

| 〈splicing unquotation D〉
〈splicing unquotation D〉 −→ ,@〈qq template D − 1〉

| (unquote-splicing 〈qq template D − 1〉)

In 〈quasiquotation〉s, a 〈list qq template D〉 can some-
times be confused with either an 〈unquotation D〉 or
a 〈splicing unquotation D〉. The interpretation as an
〈unquotation〉 or 〈splicing unquotation D〉 takes prece-
dence.

7.1.5. Transformers

〈transformer spec〉 −→
(syntax-rules (〈identifier〉*) 〈syntax rule〉*)
| (syntax-rules 〈identifier〉 (〈identifier〉*)
〈syntax rule〉*)

〈syntax rule〉 −→ (〈pattern〉 〈template〉)
〈pattern〉 −→ 〈pattern identifier〉

| 〈underscore〉
| (〈pattern〉*)
| (〈pattern〉+ . 〈pattern〉)
| (〈pattern〉* 〈pattern〉 〈ellipsis〉 〈pattern〉*)
| (〈pattern〉* 〈pattern〉 〈ellipsis〉 〈pattern〉*

. 〈pattern〉)
| #(〈pattern〉*)
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| #(〈pattern〉* 〈pattern〉 〈ellipsis〉 〈pattern〉*)
| 〈pattern datum〉

〈pattern datum〉 −→ 〈string〉
| 〈character〉
| 〈boolean〉
| 〈number〉

〈template〉 −→ 〈pattern identifier〉
| (〈template element〉*)
| (〈template element〉+ . 〈template〉)
| #(〈template element〉*)
| 〈template datum〉

〈template element〉 −→ 〈template〉
| 〈template〉 〈ellipsis〉

〈template datum〉 −→ 〈pattern datum〉
〈pattern identifier〉 −→ 〈any identifier except ...〉
〈ellipsis〉 −→ 〈an identifier defaulting to ...〉
〈underscore〉 −→ 〈the identifier 〉

7.1.6. Programs and definitions

〈program〉 −→ 〈command or definition〉*
〈command or definition〉 −→ 〈command〉

| 〈definition〉
| (import 〈import set〉+)
| (begin 〈command or definition〉+)

〈definition〉 −→ (define 〈identifier〉 〈expression〉)
| (define (〈identifier〉 〈def formals〉) 〈body〉)
| 〈syntax definition〉
| (define-values 〈def formals〉 〈body〉)
| (define-record-type 〈identifier〉
〈constructor〉 〈identifier〉 〈field spec〉*)

| (begin 〈definition〉*)
〈def formals〉 −→ 〈identifier〉*

| 〈identifier〉* . 〈identifier〉
〈constructor〉 −→ (〈identifier〉 〈field name〉*)
〈field spec〉 −→ (〈field name〉 〈accessor〉)

| (〈field name〉 〈accessor〉 〈mutator〉)
〈field name〉 −→ 〈identifier〉
〈accessor〉 −→ 〈identifier〉
〈mutator〉 −→ 〈identifier〉
〈syntax definition〉 −→

(define-syntax 〈keyword〉 〈transformer spec〉)

7.1.7. Libraries

〈library〉 −→
(define-library 〈library name〉
〈library declaration〉*)

〈library name〉 −→ (〈library name part〉+)
〈library name part〉 −→ 〈identifier〉 | 〈uinteger 10〉
〈library declaration〉 −→ (export 〈export spec〉*)

| (import 〈import set〉*)
| (begin 〈command or definition〉*)

| (include 〈string〉+)
| (include-ci 〈string〉+)
| (cond-expand 〈cond-expand clause〉*)
| (cond-expand 〈cond-expand clause〉*

(else 〈library declaration〉*))
〈export spec〉 −→ 〈identifier〉

| (rename 〈identifier〉 〈identifier〉)
〈import set〉 −→ 〈library name〉

| (only 〈import set〉 〈identifier〉+)
| (except 〈import set〉 〈identifier〉+)
| (prefix 〈import set〉 〈identifier〉)
| (rename 〈import set〉 〈export spec〉+)

〈cond-expand clause〉 −→
(〈feature requirement〉 〈library declaration〉*)

〈feature requirement〉 −→ 〈identifier〉
| 〈library name〉
| (and 〈feature requirement〉*)
| (or 〈feature requirement〉*)
| (not 〈feature requirement〉)

7.2. Formal semantics

This section provides a formal denotational semantics for
the primitive expressions of Scheme and selected built-in
procedures. The concepts and notation used here are de-
scribed in [37]; the notation is summarized below:

〈 . . . 〉 sequence formation
s ↓ k kth member of the sequence s (1-based)
#s length of sequence s
s § t concatenation of sequences s and t
s † k drop the first k members of sequence s
t→ a, b McCarthy conditional “if t then a else b”
ρ[x/i] substitution “ρ with x for i”
x in D injection of x into domain D

x | D projection of x to domain D

The reason that expression continuations take sequences
of values instead of single values is to simplify the formal
treatment of procedure calls and multiple return values.

The boolean flag associated with pairs, vectors, and strings
will be true for mutable objects and false for immutable
objects.

The order of evaluation within a call is unspecified. We
mimic that here by applying arbitrary permutations per-
mute and unpermute, which must be inverses, to the argu-
ments in a call before and after they are evaluated. This is
not quite right since it suggests, incorrectly, that the order
of evaluation is constant throughout a program (for any
given number of arguments), but it is a closer approxima-
tion to the intended semantics than a left-to-right evalua-
tion would be.

The storage allocator new is implementation-dependent,
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but it must obey the following axiom: if new σ ∈ L, then
σ (new σ | L) ↓ 2 = false.

The definition of K is omitted because an accurate defini-
tion of K would complicate the semantics without being
very interesting.

If P is a program in which all variables are defined before
being referenced or assigned, then the meaning of P is

E [[((lambda (I*) P’) 〈undefined〉 . . . )]]

where I* is the sequence of variables defined in P, P′ is the
sequence of expressions obtained by replacing every defini-
tion in P by an assignment, 〈undefined〉 is an expression
that evaluates to undefined, and E is the semantic function
that assigns meaning to expressions.

7.2.1. Abstract syntax

K ∈ Con constants, including quotations
I ∈ Ide identifiers (variables)

E ∈ Exp expressions
Γ ∈ Com = Exp commands

Exp −→ K | I | (E0 E*)
| (lambda (I*) Γ* E0)

| (lambda (I* . I) Γ* E0)

| (lambda I Γ* E0)

| (if E0 E1 E2) | (if E0 E1)

| (set! I E)

7.2.2. Domain equations

α ∈ L locations
ν ∈ N natural numbers

T = {false, true} booleans
Q symbols
H characters
R numbers
Ep = L× L× T pairs
Ev = L*× T vectors
Es = L*× T strings
M = {false, true, null, undefined, unspecified}

miscellaneous
φ ∈ F = L× (E*→ K→ C) procedure values
ε ∈ E = Q + H + R + Ep + Ev + Es + M + F

expressed values
σ ∈ S = L→ (E× T) stores
ρ ∈ U = Ide→ L environments
θ ∈ C = S→ A command continuations
κ ∈ K = E*→ C expression continuations

A answers
X errors

7.2.3. Semantic functions

K : Con→ E

E : Exp→ U→ K→ C

E* : Exp*→ U→ K→ C

C : Com*→ U→ C→ C

Definition of K deliberately omitted.

E [[K]] = λρκ . send (K[[K]])κ

E [[I]] = λρκ . hold (lookup ρ I)
(single(λε . ε = undefined→

wrong “undefined variable”,
send ε κ))

E [[(E0 E*)]] =
λρκ . E*(permute(〈E0〉 § E*))

ρ
(λε* . ((λε* . applicate (ε* ↓ 1) (ε* † 1) κ)

(unpermute ε*)))

E [[(lambda (I*) Γ* E0)]] =
λρκ . λσ .

new σ ∈ L→
send (〈new σ | L,

λε*κ′ .#ε* = #I*→
tievals(λα* . (λρ′ . C[[Γ*]]ρ′(E [[E0]]ρ′κ′))

(extends ρ I* α*))
ε*,

wrong “wrong number of arguments”〉
in E)

κ
(update (new σ | L) unspecified σ),

wrong “out of memory” σ

E [[(lambda (I* . I) Γ* E0)]] =
λρκ . λσ .

new σ ∈ L→
send (〈new σ | L,

λε*κ′ .#ε* ≥ #I*→
tievalsrest

(λα* . (λρ′ . C[[Γ*]]ρ′(E [[E0]]ρ′κ′))
(extends ρ (I* § 〈I〉) α*))

ε*
(#I*),

wrong “too few arguments”〉 in E)
κ
(update (new σ | L) unspecified σ),

wrong “out of memory” σ

E [[(lambda I Γ* E0)]] = E [[(lambda (. I) Γ* E0)]]

E [[(if E0 E1 E2)]] =
λρκ . E [[E0]] ρ (single (λε . truish ε→ E [[E1]]ρκ,

E [[E2]]ρκ))

E [[(if E0 E1)]] =
λρκ . E [[E0]] ρ (single (λε . truish ε→ E [[E1]]ρκ,

send unspecified κ))

Here and elsewhere, any expressed value other than undefined
may be used in place of unspecified.



62 Revised7 Scheme

E [[(set! I E)]] =
λρκ . E [[E]] ρ (single(λε . assign (lookup ρ I)

ε
(send unspecified κ)))

E*[[ ]] = λρκ . κ〈 〉

E*[[E0 E*]] =
λρκ . E [[E0]] ρ (single(λε0 . E*[[E*]] ρ (λε* . κ (〈ε0〉 § ε*))))

C[[ ]] = λρθ . θ

C[[Γ0 Γ*]] = λρθ . E [[Γ0]] ρ (λε* . C[[Γ*]]ρθ)

7.2.4. Auxiliary functions

lookup : U→ Ide→ L

lookup = λρI . ρI

extends : U→ Ide*→ L*→ U

extends =
λρI*α* .#I* = 0→ ρ,

extends (ρ[(α* ↓ 1)/(I* ↓ 1)]) (I* † 1) (α* † 1)

wrong : X→ C [implementation-dependent]

send : E→ K→ C

send = λεκ . κ〈ε〉

single : (E→ C)→ K

single =
λψε* .#ε* = 1→ ψ(ε* ↓ 1),

wrong “wrong number of return values”

new : S→ (L + {error}) [implementation-dependent]

hold : L→ K→ C

hold = λακσ . send (σα ↓ 1)κσ

assign : L→ E→ C→ C

assign = λαεθσ . θ(update αεσ)

update : L→ E→ S→ S

update = λαεσ . σ[〈ε, true〉/α]

tievals : (L*→ C)→ E*→ C

tievals =
λψε*σ .#ε* = 0→ ψ〈 〉σ,

new σ ∈ L→ tievals (λα* . ψ(〈new σ | L〉 § α*))
(ε* † 1)
(update(new σ | L)(ε* ↓ 1)σ),

wrong “out of memory”σ

tievalsrest : (L*→ C)→ E*→ N→ C

tievalsrest =
λψε*ν . list (dropfirst ε*ν)

(single(λε . tievals ψ ((takefirst ε*ν) § 〈ε〉)))

dropfirst = λln . n = 0→ l, dropfirst (l † 1)(n− 1)

takefirst = λln . n = 0→ 〈 〉, 〈l ↓ 1〉 § (takefirst (l † 1)(n− 1))

truish : E→ T

truish = λε . ε = false→ false, true

permute : Exp*→ Exp* [implementation-dependent]

unpermute : E*→ E* [inverse of permute]

applicate : E→ E*→ K→ C

applicate =
λεε*κ . ε ∈ F→ (ε | F ↓ 2)ε*κ,wrong “bad procedure”

onearg : (E→ K→ C)→ (E*→ K→ C)
onearg =
λζε*κ .#ε* = 1→ ζ(ε* ↓ 1)κ,

wrong “wrong number of arguments”

twoarg : (E→ E→ K→ C)→ (E*→ K→ C)
twoarg =
λζε*κ .#ε* = 2→ ζ(ε* ↓ 1)(ε* ↓ 2)κ,

wrong “wrong number of arguments”

list : E*→ K→ C

list =
λε*κ .#ε* = 0→ send null κ,

list (ε* † 1)(single(λε . cons〈ε* ↓ 1, ε〉κ))

cons : E*→ K→ C

cons =
twoarg (λε1ε2κσ . new σ ∈ L→

(λσ′ . new σ′ ∈ L→
send (〈new σ | L,new σ′ | L, true〉

in E)
κ
(update(new σ′ | L)ε2σ

′),
wrong “out of memory”σ′)

(update(new σ | L)ε1σ),
wrong “out of memory”σ)

less : E*→ K→ C

less =
twoarg (λε1ε2κ . (ε1 ∈ R ∧ ε2 ∈ R)→

send (ε1 | R < ε2 | R→ true, false)κ,
wrong “non-numeric argument to <”)

add : E*→ K→ C

add =
twoarg (λε1ε2κ . (ε1 ∈ R ∧ ε2 ∈ R)→

send ((ε1 | R + ε2 | R) in E)κ,
wrong “non-numeric argument to +”)

car : E*→ K→ C

car =
onearg (λεκ . ε ∈ Ep → hold (ε | Ep ↓ 1)κ,

wrong “non-pair argument to car”)

cdr : E*→ K→ C [similar to car]

setcar : E*→ K→ C

setcar =
twoarg (λε1ε2κ . ε1 ∈ Ep →

(ε1 | Ep ↓ 3)→ assign (ε1 | Ep ↓ 1)
ε2
(send unspecified κ),

wrong “immutable argument to set-car!”,
wrong “non-pair argument to set-car!”)
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eqv : E*→ K→ C

eqv =
twoarg (λε1ε2κ . (ε1 ∈ M ∧ ε2 ∈ M)→

send (ε1 | M = ε2 | M→ true, false)κ,
(ε1 ∈ Q ∧ ε2 ∈ Q)→

send (ε1 | Q = ε2 | Q→ true, false)κ,
(ε1 ∈ H ∧ ε2 ∈ H)→

send (ε1 | H = ε2 | H→ true, false)κ,
(ε1 ∈ R ∧ ε2 ∈ R)→

send (ε1 | R = ε2 | R→ true, false)κ,
(ε1 ∈ Ep ∧ ε2 ∈ Ep)→

send ((λp1p2 . ((p1 ↓ 1) = (p2 ↓ 1)∧
(p1 ↓ 2) = (p2 ↓ 2))→ true,

false)
(ε1 | Ep)
(ε2 | Ep))
κ,

(ε1 ∈ Ev ∧ ε2 ∈ Ev)→ . . . ,
(ε1 ∈ Es ∧ ε2 ∈ Es)→ . . . ,
(ε1 ∈ F ∧ ε2 ∈ F)→

send ((ε1 | F ↓ 1) = (ε2 | F ↓ 1)→ true, false)
κ,

send false κ)

apply : E*→ K→ C

apply =
twoarg (λε1ε2κ . ε1 ∈ F→ valueslist 〈ε2〉(λε* . applicate ε1ε*κ),

wrong “bad procedure argument to apply”)

valueslist : E*→ K→ C

valueslist =
onearg (λεκ . ε ∈ Ep →

cdr〈ε〉
(λε* . valueslist

ε*
(λε* . car〈ε〉(single(λε . κ(〈ε〉 § ε*))))),

ε = null→ κ〈 〉,
wrong “non-list argument to values-list”)

cwcc : E*→ K→ C [call-with-current-continuation]
cwcc =

onearg (λεκ . ε ∈ F→
(λσ . new σ ∈ L→

applicate ε
〈〈new σ | L, λε*κ′ . κε*〉 in E〉
κ
(update (new σ | L)

unspecified
σ),

wrong “out of memory”σ),
wrong “bad procedure argument”)

values : E*→ K→ C

values = λε*κ . κε*

cwv : E*→ K→ C [call-with-values]
cwv =

twoarg (λε1ε2κ . applicate ε1〈 〉(λε* . applicate ε2 ε*))

7.3. Derived expression types

This section gives macro definitions for the derived ex-
pression types in terms of the primitive expression types
(literal, variable, call, lambda, if, and set!), except for
quasiquote.

(define-syntax cond

(syntax-rules (else =>)

((cond (else result1 result2 ...))

(begin result1 result2 ...))

((cond (test => result))

(let ((temp test))

(if temp (result temp))))

((cond (test => result) clause1 clause2 ...)

(let ((temp test))

(if temp

(result temp)

(cond clause1 clause2 ...))))

((cond (test)) test)

((cond (test) clause1 clause2 ...)

(let ((temp test))

(if temp

temp

(cond clause1 clause2 ...))))

((cond (test result1 result2 ...))

(if test (begin result1 result2 ...)))

((cond (test result1 result2 ...)

clause1 clause2 ...)

(if test

(begin result1 result2 ...)

(cond clause1 clause2 ...)))))

(define-syntax case

(syntax-rules (else =>)

((case (key ...)

clauses ...)

(let ((atom-key (key ...)))

(case atom-key clauses ...)))

((case key

(else => result))

(result key))

((case key

(else result1 result2 ...))

(begin result1 result2 ...))

((case key

((atoms ...) result1 result2 ...))

(if (memv key ’(atoms ...))

(begin result1 result2 ...)))

((case key

((atoms ...) => result))

(if (memv key ’(atoms ...))

(result key)))

((case key

((atoms ...) => result)

clause clauses ...)

(if (memv key ’(atoms ...))

(result key)

(case key clause clauses ...)))
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((case key

((atoms ...) result1 result2 ...)

clause clauses ...)

(if (memv key ’(atoms ...))

(begin result1 result2 ...)

(case key clause clauses ...)))))

(define-syntax and

(syntax-rules ()

((and) #t)

((and test) test)

((and test1 test2 ...)

(if test1 (and test2 ...) #f))))

(define-syntax or

(syntax-rules ()

((or) #f)

((or test) test)

((or test1 test2 ...)

(let ((x test1))

(if x x (or test2 ...))))))

(define-syntax when

(syntax-rules ()

((when test result1 result2 ...)

(if test

(begin result1 result2 ...)))))

(define-syntax unless

(syntax-rules ()

((unless test result1 result2 ...)

(if (not test)

(begin result1 result2 ...)))))

(define-syntax let

(syntax-rules ()

((let ((name val) ...) body1 body2 ...)

((lambda (name ...) body1 body2 ...)

val ...))

((let tag ((name val) ...) body1 body2 ...)

((letrec ((tag (lambda (name ...)

body1 body2 ...)))

tag)

val ...))))

(define-syntax let*

(syntax-rules ()

((let* () body1 body2 ...)

(let () body1 body2 ...))

((let* ((name1 val1) (name2 val2) ...)

body1 body2 ...)

(let ((name1 val1))

(let* ((name2 val2) ...)

body1 body2 ...)))))

The following letrec macro uses the symbol <undefined>
in place of an expression which returns something that
when stored in a location makes it an error to try to ob-
tain the value stored in the location (no such expression is
defined in Scheme). A trick is used to generate the tempo-
rary names needed to avoid specifying the order in which
the values are evaluated. This could also be accomplished
by using an auxiliary macro.

(define-syntax letrec

(syntax-rules ()

((letrec ((var1 init1) ...) body ...)

(letrec "generate temp names"

(var1 ...)

()

((var1 init1) ...)

body ...))

((letrec "generate temp names"

()

(temp1 ...)

((var1 init1) ...)

body ...)

(let ((var1 <undefined>) ...)

(let ((temp1 init1) ...)

(set! var1 temp1)

...

body ...)))

((letrec "generate temp names"

(x y ...)

(temp ...)

((var1 init1) ...)

body ...)

(letrec "generate temp names"

(y ...)

(newtemp temp ...)

((var1 init1) ...)

body ...))))

(define-syntax letrec*

(syntax-rules ()

((letrec* ((var1 init1) ...) body1 body2 ...)

(let ((var1 <undefined>) ...)

(set! var1 init1)

...

(let () body1 body2 ...)))))

(define-syntax let-values

(syntax-rules ()

((let-values (binding ...) body0 body1 ...)

(let-values "bind"

(binding ...) () (begin body0 body1 ...)))

((let-values "bind" () tmps body)

(let tmps body))

((let-values "bind" ((b0 e0)

binding ...) tmps body)

(let-values "mktmp" b0 e0 ()

(binding ...) tmps body))
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((let-values "mktmp" () e0 args

bindings tmps body)

(call-with-values

(lambda () e0)

(lambda args

(let-values "bind"

bindings tmps body))))

((let-values "mktmp" (a . b) e0 (arg ...)

bindings (tmp ...) body)

(let-values "mktmp" b e0 (arg ... x)

bindings (tmp ... (a x)) body))

((let-values "mktmp" a e0 (arg ...)

bindings (tmp ...) body)

(call-with-values

(lambda () e0)

(lambda (arg ... . x)

(let-values "bind"

bindings (tmp ... (a x)) body))))))

(define-syntax let*-values

(syntax-rules ()

((let*-values () body0 body1 ...)

(begin body0 body1 ...))

((let*-values (binding0 binding1 ...)

body0 body1 ...)

(let-values (binding0)

(let*-values (binding1 ...)

body0 body1 ...)))))

(define-syntax define-values

(syntax-rules ()

((define-values () expr)

(define dummy

(call-with-values (lambda () expr)

(lambda args #f))))

((define-values (var) expr)

(define var expr))

((define-values (var0 var1 ... varn) expr)

(begin

(define var0

(call-with-values (lambda () expr)

list))

(define var1

(let ((v (cadr var0)))

(set-cdr! var0 (cddr var0))

v)) ...

(define varn

(let ((v (cadr var0)))

(set! var0 (car var0))

v))))

((define-values (var0 var1 ... . varn) expr)

(begin

(define var0

(call-with-values (lambda () expr)

list))

(define var1

(let ((v (cadr var0)))

(set-cdr! var0 (cddr var0))

v)) ...

(define varn

(let ((v (cdr var0)))

(set! var0 (car var0))

v))))

((define-values var expr)

(define var

(call-with-values (lambda () expr)

list)))))

(define-syntax begin

(syntax-rules ()

((begin exp ...)

((lambda () exp ...)))))

The following alternative expansion for begin does not
make use of the ability to write more than one expression
in the body of a lambda expression. In any case, note that
these rules apply only if the body of the begin contains no
definitions.

(define-syntax begin

(syntax-rules ()

((begin exp)

exp)

((begin exp1 exp2 ...)

(call-with-values

(lambda () exp1)

(lambda args

(begin exp2 ...))))))

The following definition of do uses a trick to expand the
variable clauses. As with letrec above, an auxiliary macro
would also work. The expression (if #f #f) is used to
obtain an unspecific value.

(define-syntax do

(syntax-rules ()

((do ((var init step ...) ...)

(test expr ...)

command ...)

(letrec

((loop

(lambda (var ...)

(if test

(begin

(if #f #f)

expr ...)

(begin

command

...

(loop (do "step" var step ...)

...))))))

(loop init ...)))

((do "step" x)

x)
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((do "step" x y)

y)))

Here is a possible implementation of delay, force and
lazy. We define the expression

(lazy 〈expression〉)

to have the same meaning as the procedure call

(make-promise #f (lambda () 〈expression〉))

as follows

(define-syntax lazy

(syntax-rules ()

((lazy expression)

(make-promise #f (lambda () expression)))))

and we define the expression

(delay 〈expression〉)

to have the same meaning as:

(lazy (make-promise #t 〈expression〉))

as follows

(define-syntax delay

(syntax-rules ()

((delay expression)

(lazy (make-promise #t expression)))))

where make-promise is defined as follows:

(define make-promise

(lambda (done? proc)

(list (cons done? proc))))

Finally, we define force to call the procedure expressions
in promises iteratively using a trampoline technique fol-
lowing [39] until a non-lazy result (i.e. a value created by
delay instead of lazy) is returned, as follows:

(define (force promise)

(if (promise-done? promise)

(promise-value promise)

(let ((promise* ((promise-value promise))))

(unless (promise-done? promise)

(promise-update! promise* promise))

(force promise))))

with the following promise accessors:

(define promise-done?

(lambda (x) (car (car x))))

(define promise-value

(lambda (x) (cdr (car x))))

(define promise-update!

(lambda (new old)

(set-car! (car old) (promise-done? new))

(set-cdr! (car old) (promise-value new))

(set-car! new (car old))))

The following implementation of make-parameter and
parameterize is suitable for an implementation with no
threads. Parameter objects are implemented here as pro-
cedures, using two arbitrary unique objects <param-set!>
and <param-convert>:

(define (make-parameter init . o)

(let* ((converter

(if (pair? o) (car o) (lambda (x) x)))

(value (converter init)))

(lambda args

(cond

((null? args)

value)

((eq? (car args) <param-set!>)

(set! value (cadr args)))

((eq? (car args) <param-convert>)

converter)

(else

(error "bad parameter syntax"))))))

Then parameterize uses dynamic-wind to dynamically re-
bind the associated value:

(define-syntax parameterize

(syntax-rules ()

((parameterize ("step")

((param value p old new) ...)

()

body)

(let ((p param) ...)

(let ((old (p)) ...

(new ((p <param-convert>) value)) ...)

(dynamic-wind

(lambda () (p <param-set!> new) ...)

(lambda () . body)

(lambda () (p <param-set!> old) ...)))))

((parameterize ("step")

args

((param value) . rest)

body)

(parameterize ("step")

((param value p old new) . args)

rest

body))

((parameterize ((param value) ...) . body)

(parameterize ("step")

()

((param value) ...)

body))))

The following implementation of guard depends on an aux-
iliary macro, here called guard-aux.

(define-syntax guard

(syntax-rules ()

((guard (var clause ...) e1 e2 ...)

((call/cc

(lambda (guard-k)

(with-exception-handler
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(lambda (condition)

((call/cc

(lambda (handler-k)

(guard-k

(lambda ()

(let ((var condition))

(guard-aux

(handler-k

(lambda ()

(raise condition)))

clause ...))))))))

(lambda ()

(call-with-values

(lambda () e1 e2 ...)

(lambda args

(guard-k

(lambda ()

(apply values args)))))))))))))

(define-syntax guard-aux

(syntax-rules (else =>)

((guard-aux reraise (else result1 result2 ...))

(begin result1 result2 ...))

((guard-aux reraise (test => result))

(let ((temp test))

(if temp

(result temp)

reraise)))

((guard-aux reraise (test => result)

clause1 clause2 ...)

(let ((temp test))

(if temp

(result temp)

(guard-aux reraise clause1 clause2 ...))))

((guard-aux reraise (test))

test)

((guard-aux reraise (test) clause1 clause2 ...)

(let ((temp test))

(if temp

temp

(guard-aux reraise clause1 clause2 ...))))

((guard-aux reraise (test result1 result2 ...))

(if test

(begin result1 result2 ...)

reraise))

((guard-aux reraise

(test result1 result2 ...)

clause1 clause2 ...)

(if test

(begin result1 result2 ...)

(guard-aux reraise clause1 clause2 ...)))))

(define-syntax case-lambda

(syntax-rules ()

((case-lambda (params body0 body1 ...) ...)

(lambda args

(let ((len (length args)))

(let-syntax

((cl (syntax-rules ::: ()

((cl)

(error "no matching clause"))

((cl ((p :::) . body) . rest)

(if (= len (length ’(p :::)))

(apply (lambda (p :::)

. body)

args)

(cl . rest)))

((cl ((p ::: . tail) . body)

. rest)

(if (>= len (length ’(p :::)))

(apply

(lambda (p ::: . tail)

. body)

args)

(cl . rest))))))

(cl (params body0 body1 ...) ...)))))))
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Appendix A. Standard Libraries

This section lists the exports provided by the standard li-
braries. The libraries are factored so as to separate features
which might not be supported by all implementations, or
which might be expensive to load.

The scheme library prefix is used for all standard libraries,
and is reserved for use by future standards.

Base Library

The (scheme base) library exports many of the proce-
dures and syntax bindings that are traditionally associated
with Scheme.

* + -

... / <

<= = =>

> >=

abs and append

apply assoc assq

assv begin binary-port?

boolean? bytevector-copy

bytevector-copy!

bytevector-copy-partial

bytevector-copy-partial!

bytevector-length

bytevector-u8-ref

bytevector-u8-set! bytevector?

caaaar caaadr caaar

caadar caaddr caadr

caar caar cadaar

cadadr cadar caddar

cadddr caddr cadr

cadr call-with-current-continuation

call-with-port call-with-values

call/cc car case

cdaaar cdaadr cdaar

cdadar cdaddr cdadr

cdar cddaar cddadr

cddar cdddar cddddr

cdddr cddr cdr

ceiling char->integer char-ready?

char<=? char<? char=?

char>=? char>? char?

close-input-port

close-output-port close-port

complex? cond cond-expand

cons current-error-port

current-input-port

current-output-port define

define-record-type define-syntax

define-values denominator do

dynamic-wind else eof-object?

eq? equal? eqv?

error error-object-irritants

error-object-message error-object?

even? exact->inexact

exact-integer-sqrt exact-integer?

exact? expt floor

flush-output-port for-each

gcd get-output-bytevector

get-output-string guard

if import inexact->exact

inexact? input-port? integer->char

integer? lambda lcm

length let let*

let*-values let-syntax let-values

letrec letrec* letrec-syntax

list list->string list->vector

list-copy list-ref list-set!

list-tail list? make-bytevector

make-list make-parameter make-string

make-vector map max

member memq memv

min modulo negative?

newline not null?

number->string number? numerator

odd? open-input-bytevector

open-input-string

open-output-bytevector

open-output-string or

output-port? pair? parameterize

peek-char peek-u8 port-open?

port? positive? procedure?

quasiquote quote quotient

raise raise-continuable

rational? rationalize read-bytevector

read-bytevector! read-char

read-line read-u8 real?

remainder reverse round

set! set-car! set-cdr!

string string->list string->number

string->symbol string->utf8 string->vector

string-append string-copy string-fill!

string-for-each string-length string-map

string-ref string-set! string<=?

string<? string=? string>=?

string>? string? substring

symbol->string symbol? syntax-error

syntax-rules textual-port? truncate

u8-ready? unless unquote

unquote-splicing utf8->string

values vector vector->list

vector->string vector-copy vector-fill!

vector-for-each vector-length vector-map

vector-ref vector-set! vector?

when with-exception-handler

write-bytevector write-char

write-partial-bytevector write-u8

zero?

Inexact Library

The (scheme inexact) library exports procedures which
are typically only useful with inexact values.

acos asin atan

cos exp finite?

log nan? sin

sqrt tan
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Complex Library

The (scheme complex) library exports procedures which
are typically only useful with non-real numbers.

angle imag-part magnitude

make-polar make-rectangular

real-part

Division Library

The (scheme division) library exports procedures for in-
teger division.

ceiling-quotient

ceiling-remainder ceiling/

centered-quotient

centered-remainder centered/

euclidean-quotient

euclidean-remainder euclidean/

floor-quotient floor-remainder floor/

round-quotient round-remainder round/

truncate-quotient

truncate-remainder truncate/

Lazy Library

The (scheme lazy) library exports procedures and syntax
keywords for lazy evaluation.

delay eager force

lazy

Case-Lambda Library

The (scheme case-lambda) library exports the
case-lambda syntax.

case-lambda

Eval Library

The (scheme eval) library exports procedures for evalu-
ating Scheme data as programs.

environment eval

null-environment

scheme-report-environment

Repl Library

The (scheme repl) library exports the
interaction-environment procedure.

interaction-environment

Process Context Library

The (scheme process-context) library exports proce-
dures for accessing with the program’s calling context.

command-line exit

get-environment-variable

get-environment-variables

Load Library

The (scheme load) library exports procedures for loading
Scheme expressions from files.

load

File Library

The (scheme file) library provides procedures for access-
ing files.

call-with-input-file

call-with-output-file delete-file

file-exists? open-binary-input-file

open-binary-output-file open-input-file

open-output-file

with-input-from-file

with-output-to-file

Read Library

The (scheme read) library provides procedures for read-
ing Scheme objects.

read

Write Library

The (scheme write) library provides procedures for writ-
ing Scheme objects.

display write write-simple

Char Library

The (scheme char) library provides procedures for deal-
ing with Unicode character operations.

char-alphabetic? char-ci<=?

char-ci<? char-ci=? char-ci>=?

char-ci>? char-downcase char-foldcase

char-lower-case? char-numeric?

char-upcase char-upper-case?

char-whitespace? digit-value

string-ci<=? string-ci<? string-ci=?

string-ci>=? string-ci>? string-downcase

string-foldcase string-upcase

Char Normalization Library

The (scheme char normalization) library provides pro-
cedures for dealing with Unicode normalization operations.

string-ni<=? string-ni<? string-ni=?

string-ni>=? string-ni>?
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Time Library

The (scheme time) library provides access to time-related
values.

current-jiffy current-second

jiffies-per-second

Appendix B. Standard Feature Identi-
fiers

An implementation may provide any or all of the feature
identifiers listed below, as well as any others that it chooses,
but must not provide a feature identifier if it does not pro-
vide the corresponding feature. These features are used by
cond-expand.

r7rs

All R7RS Scheme implementations have this feature.

exact-closed

All algebraic operations except / produce exact values
given exact inputs.

ratios

/ with exact arguments produces an exact result when
the divisor is nonzero.

exact-complex

Exact complex numbers are provided.

ieee-float

Inexact numbers are IEEE 754 floating point values.

full-unicode

All Unicode codepoints are supported as characters
(except the surrogates).

windows

This Scheme implementation is running on Windows.

posix

This Scheme implementation is running on a POSIX
system.

unix, darwin, linux, bsd, freebsd, solaris, ...

Operating system flags (more than one may apply).

i386, x86-64, ppc, sparc, jvm, clr, llvm, ...

CPU architecture flags.

ilp32, lp64, ilp64, ...

C memory model flags.

big-endian, little-endian

Byte order flags.

〈name〉
The name of this implementation.

〈name-version〉
The name and version of this implementation.
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NOTES

Language changes since R5RS

This section enumerates the differences between this report
and the “Revised5 report” [2].

The list is incomplete and subject to change while this
report is in draft status.

• Various minor ambiguities and unclarities in R5RS
have been cleaned up.

• Libraries have been added as a new program structure
to improve encapsulation and sharing of code. Some
existing and new identifiers have been factored out
into separate libraries. Libraries can be imported into
other libraries or main programs, with controlled ex-
posure and renaming of identifiers. The contents of a
library can be made conditional on the features of the
implementation on which it is to be used.

• Exceptions can now be signalled explicitly with raise,
raise-continuable or error, and can be handled
with with-exception-handler and the guard syn-
tax. Any object can specify an error condition; the
implementation-defined conditions signalled by error

have accessor functions to retrieve the arguments
passed to error.

• New disjoint types supporting access to multiple fields
can be generated with SRFI 9’s define-record-type.

• Parameter objects can be created with
make-parameter, and dynamically rebound with
parameterize.

• Bytevectors, homogeneous vectors of integers in the
range [0, 255], have been added as a new disjoint type.
A subset of the procedures available for vectors is
provided. Bytevectors can be converted to and from
strings in accordance with the UTF-8 character en-
coding. Bytevectors have a datum representation and
evaluate to themselves.

• The procedure read-line is provided to make line-
oriented textual input simpler.

• Ports can now be designated as textual or binary ports,
with new procedures for reading and writing binary
data. The new predicate port-open? returns whether
a port is open or closed.

• String ports have been added as a way to read and
write characters to and from strings, and bytevector
ports to read and write bytes to and from bytevectors.

• The procedures current-input-port and
current-output-port are now parameter objects, as
is the newly introduced current-error-port.

• The syntax-rules construct now recognizes (under-
score) as a wildcard, allows the ellipsis symbol to be
specified explicitly instead of the default ..., allows
template escapes with an ellipsis-prefixed list, and al-
lows tail patterns to follow an ellipsis pattern.

• The syntax-error syntax has been added as a way to
signal immediate and more informative errors when a
macro is expanded.

• Internal define-syntax definitions are now allowed
wherever internal defines are.

• The letrec* binding construct has been added, and
internal define is specified in terms of it.

• Support for capturing multiple values has been
enhanced with define-values, let-values, and
let*-values. Programs are now explicitly permitted
to pass zero values or more than one value to contin-
uations which discard them.

• The case conditional now supports a => syntax anal-
ogous to cond.

• To support dispatching on the number of arguments
passed to a procedure, case-lambda has been added
in its own library.

• The convenience conditionals when and unless have
been added.

• Positive infinity, negative infinity, NaN, and nega-
tive inexact zero have been added to the numeric
tower as inexact values with the written representa-
tions +inf.0, -inf.0, +nan.0, and -0.0 respectively.

• The procedures map and for-each are now required
to terminate on the shortest list when inputs have dif-
ferent length.

• The procedures member and assoc now take an op-
tional third argument specifying the equality predicate
to be used.

• The procedures exact-integer? and
exact-integer-sqrt have been added.

• The procedures make-list, list-copy, list-set!,
string-map, string-for-each, string->vector,
vector-copy, vector-map, vector-for-each, and
vector->string have been added to round out the
sequence operations.
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• Implementations may provide any subset of the full
Unicode repertoire that includes ASCII, but imple-
mentations must support any such subset in a way
consistent with Unicode. Various character and string
procedures have been extended accordingly. String
comparison remains implementation-dependent, and
is no longer required to be consistent with character
comparison, which is based on Unicode code points.
The new digit-value procedure is added to obtain
the numerical value of a numeric character.

• The procedures string-ni=? and related procedures
have been added to compare strings as though they
had gone through an implementation-defined normal-
ization, without exposing the normalization.

• Case insensitivity is now the default.

• There are now two additional comment syntaxes: #;

to skip the next datum, and #| ... |# for nestable
block comments.

• Data prefixed with datum labels #<n>= can be refer-
enced with #<n>#, allowing for reading and writing of
data with shared structure.

• Strings and symbols now allow mnemonic and numeric
escape sequences, and the list of named characters has
been extended.

• The procedures file-exists? and delete-file are
available in the (scheme file) library.

• An interface to the system environment and command
line is available in the (scheme process-context) li-
brary.

• Procedures for accessing time-related values are avail-
able in the (scheme time) library.

• A complete set of integer division operators is available
in the (scheme division) library.

• The load procedure now accepts a second argument
specifying the environment to load into.

• The procedures transcript-on and transcript-off

have been removed.

• The semantics of read-eval-print loops are now partly
prescribed, allowing the redefinition of procedures
(but not syntax keywords) to be retroactive.

Incompatibilities with the main R6RS document

This section enumerates the incompatibilities between
R7RS and the “Revised6 report” [1].

The list is incomplete and subject to change while this
report is in draft status.

• The syntax of the library system was deliberately cho-
sen to be syntactically different from R6RS, using
define-library instead of library in order to al-
low easy disambiguation between R6RS and R7RS li-
braries.

• The library system does not support phase distinc-
tions, which are unnecessary in the absence of low-
level macros (see below), nor does it support version-
ing, which is an important feature but deserves more
experimentation before being standardized.

• Putting an extra level of indirection around the li-
brary body allows room for extensibility. The R6RS
syntax provides two positional forms which must be
present and must have the correct keywords, export
and import, which does not allow for unambiguous ex-
tensions. The Working Group considers extensibility
to be important, and so chose a syntax which provides
a clear separation between the library declarations and
the Scheme code which makes up the body.

• The include library declaration makes it easier to in-
clude separate files, and the include-ci variant allows
legacy case-insensitive code to be incorporated.

• The cond-expand library declaration based on SRFI
0 allows for a more flexible alternative to the R6RS
.impl.sls file naming convention.

• Since the R7RS library system is straightforward, we
expect that R6RS implementations will be able to sup-
port the define-library syntax in addition to their
library syntax.

• The grouping of standardized identifiers into libraries
is different from the R6RS approach. In particular,
procedures which are optional either expressly or by
implication in R5RS have been removed from the base
library. Only the base library is an absolute require-
ment.

• Identifier syntax is not provided. This is a useful
feature in some situations, but the existence of such
macros means that neither programmers nor other
macros can look at an identifier in an evaluated po-
sition and know it is a reference — this in a sense
makes all macros slightly weaker. Individual imple-
mentations are encouraged to continue experimenting
with this and other extensions before further standard-
ization is done.

• Internal syntax definitions are allowed, but all ref-
erences to syntax must follow the definition; the
even/odd example given in R6RS is not allowed.

• The R6RS exception system was incorporated as-is,
but the condition types have been left unspecified.
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Specific errors that must be signalled in R6RS remain
errors in R7RS, allowing implementations to provide
their own extensions. There is no discussion of safety.

• Full Unicode support is not required. Instead
of explicit normalization forms this report provides
normalization-insensitive string comparisons that use
an implementation-defined normalization form (which
may be the identity transformation). Character com-
parisons are defined by Unicode, but string compar-
isons are implementation-dependent, and therefore
need not be the lexicographic mapping of the corre-
sponding character comparisons (an incompatibility
with R5RS). Non-Unicode characters are permitted.

• The full numeric tower is optional as in R5RS,
but optional support for IEEE infinities, NaN, and
-0.0 was adopted from R6RS. Most clarifications on
numeric results were also adopted, but the R6RS
procedures real-valued?, rational-valued?, and
integer-valued? were not. The R5RS names
inexact->exact for exact and exact->inexact for
inexact were retained, with a note indicating that
their names are historical. The R6RS division op-
erators div, mod, div-and-mod, div0, mod0 and
div0-and-mod0 have been replaced with a full set of
18 operators describing 6 different rounding semantics.

• When a result is unspecified, it is still required to be
a single value, in the interests of R5RS compatibility.
However, non-final expressions in a body may return
any number of values.

• Because of widespread SRFI 1 support and extensive
code that uses it, the semantics of map and for-each

have been changed to use the SRFI 1 early termination
behavior. Likewise assoc and member take an optional
equal? argument as in SRFI 1, instead of the separate
assp and memp procedures of R6RS.

• The R6RS quasiquote clarifications have been
adopted, but the Working Group has not seen convinc-
ing enough examples of multiple-argument unquote

and unquote-splicing, so they are not provided.

• The R6RS method of specifying mantissa widths was
not adopted.

Incompatibilities with the R6RS Standard Li-
braries document

This section enumerates the incompatibilities between
R7RS and the R6RS [1] Standard Libraries.

The list is incomplete and subject to change while this
report is in draft status.

• The low-level macro system and syntax-case were
not adopted. There are two general families of macro
systems in widespread use — the syntax-case family
and the syntactic-closures family — and they have
neither been shown to be equivalent nor capable of
implementing each other. Given this situation, low-
level macros have been left to the large language.

• The new I/O system from R6RS was not adopted.
Historically, standardization reflects technologies that
have undergone a period of adoption, experimenta-
tion, and usage before incorporation into a stan-
dard. The Working Group was unhappy with the re-
dundant provision of both the new system and the
R5RS-compatible “simple I/O” system, which rele-
gated R5RS code to being a second-class citizen. How-
ever, binary I/O was added using binary ports that are
at least potentially disjoint from textual ports and use
their own parallel set of procedures.

• String ports are compatible with SRFI 6 rather than
R6RS; analogous bytevector ports are also provided.

• The Working Group felt that the R6RS records sys-
tem was overly complex, and the two layers poorly
integrated. The Working Group spent a lot of time
debating this, but in the end decided to simply use a
generative version of SRFI 9, which has near-universal
support among implementations. The Working Group
hopes to provide a more powerful records system in the
large language.

• Enumerations are not included in the small language.

• R6RS-style bytevectors are included, but provide only
the “u8” procedures in the small language. The lexical
syntax uses #u8 for compatibility with SRFI 4, rather
than the R6RS #vu8 style. With a library system, it’s
easier to change names than reader syntax.

• The utility macros when and unless are provided, but
since it would be meaningless to try to use their result,
it is left unspecified.

• The Working Group could not agree on a single design
for hash tables and left them for the large language.

• Sorting, bitwise arithmetic, and enumerations were
not considered to be sufficiently useful to include in
the small language. They will probably be included in
the large language.

• Pair and string mutation are too well-established to
be relegated to separate libraries.

ADDITIONAL MATERIAL

The Internet Scheme Repository at
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http://www.cs.indiana.edu/scheme-repository/

contains an extensive Scheme bibliography, as well as pa-
pers, programs, implementations, and other material re-
lated to Scheme.

The Scheme community website at

http://schemers.org/

contains additional resources for learning and program-
ming, job and event postings, and Scheme user group in-
formation.

A bibliography of Scheme-related research at

http://library.readscheme.org/

links to technical papers and theses related to the Scheme
language, including both classic papers and recent re-
search.

EXAMPLE

The procedure integrate-system integrates the sys-
tem

y′k = fk(y1, y2, . . . , yn), k = 1, . . . , n

of differential equations with the method of Runge-Kutta.

The parameter system-derivative is a function that
takes a system state (a vector of values for the state vari-
ables y1, . . . , yn) and produces a system derivative (the val-
ues y′1, . . . , y

′
n). The parameter initial-state provides

an initial system state, and h is an initial guess for the
length of the integration step.

The value returned by integrate-system is an infi-
nite stream of system states.

(define integrate-system

(lambda (system-derivative initial-state h)

(let ((next (runge-kutta-4 system-derivative h)))

(letrec ((states

(cons initial-state

(delay (map-streams next

states)))))

states))))

The procedure runge-kutta-4 takes a function, f,
that produces a system derivative from a system state. It
produces a function that takes a system state and produces
a new system state.

(define runge-kutta-4

(lambda (f h)

(let ((*h (scale-vector h))

(*2 (scale-vector 2))

(*1/2 (scale-vector (/ 1 2)))

(*1/6 (scale-vector (/ 1 6))))

(lambda (y)

;; y is a system state
(let* ((k0 (*h (f y)))

(k1 (*h (f (add-vectors y (*1/2 k0)))))

(k2 (*h (f (add-vectors y (*1/2 k1)))))

(k3 (*h (f (add-vectors y k2)))))

(add-vectors y

(*1/6 (add-vectors k0

(*2 k1)

(*2 k2)

k3))))))))

(define elementwise

(lambda (f)

(lambda vectors

(generate-vector

(vector-length (car vectors))

(lambda (i)

(apply f

(map (lambda (v) (vector-ref v i))

vectors)))))))

(define generate-vector

(lambda (size proc)
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(let ((ans (make-vector size)))

(letrec ((loop

(lambda (i)

(cond ((= i size) ans)

(else

(vector-set! ans i (proc i))

(loop (+ i 1)))))))

(loop 0)))))

(define add-vectors (elementwise +))

(define scale-vector

(lambda (s)

(elementwise (lambda (x) (* x s)))))

The map-streams procedure is analogous to map: it
applies its first argument (a procedure) to all the elements
of its second argument (a stream).

(define map-streams

(lambda (f s)

(cons (f (head s))

(delay (map-streams f (tail s))))))

Infinite streams are implemented as pairs whose car
holds the first element of the stream and whose cdr holds
a promise to deliver the rest of the stream.

(define head car)

(define tail

(lambda (stream) (force (cdr stream))))

The following illustrates the use of integrate-system
in integrating the system

C
dvC
dt

= −iL −
vC
R

L
diL
dt

= vC

which models a damped oscillator.

(define damped-oscillator

(lambda (R L C)

(lambda (state)

(let ((Vc (vector-ref state 0))

(Il (vector-ref state 1)))

(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))

(/ Vc L))))))

(define the-states

(integrate-system

(damped-oscillator 10000 1000 .001)

’#(1 0)

.01))
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS,
KEYWORDS, AND PROCEDURES

The principal entry for each term, procedure, or keyword is
listed first, separated from the other entries by a semicolon.

! 7
’ 12; 38
* 33
+ 33; 61
, 19; 38
,@ 19
- 34
-> 7
. 7
... 21
/ 34
; 8
< 33; 61
<= 33
= 33
=> 14
> 33
>= 33
? 7

21
‘ 20

abs 34; 36
acos 35
and 14; 62
angle 36
append 39
apply 46; 11, 62
asin 35
assoc 40
assq 40
assv 40
atan 35

#b 32; 57
backquote 19
begin 16; 23, 24, 27, 64
binary-port? 51
binding 9
binding construct 9
boolean? 37; 9
bound 9
byte 45
bytevector-copy 46
bytevector-copy! 46
bytevector-copy-partial 46
bytevector-copy-partial! 46
bytevector-length 45; 31
bytevector-u8-ref 45

bytevector-u8-set! 45
bytevector? 45; 9
bytevectors 45

caaaar 38
caaadr 38
caaar 38
caadar 38
caaddr 38
caadr 38
caar 38
cadaar 38
cadadr 38
cadar 38
caddar 38
cadddr 38
caddr 38
cadr 38
call 12
call by need 17
call-with-current-continuation 47; 11, 49, 62
call-with-input-file 51
call-with-output-file 51
call-with-port 51
call-with-values 48; 11, 62
call/cc 47; 48
car 38; 61
case 14; 62
case-lambda 20; 24, 66
catch 48
cdaaar 38
cdaadr 38
cdaar 38
cdadar 38
cdaddr 38
cdadr 38
cdar 38
cddaar 38
cddadr 38
cddar 38
cdddar 38
cddddr 38
cdddr 38
cddr 38
cdr 38
ceiling 35
ceiling-quotient 34
ceiling-remainder 34
ceiling/ 34
centered-quotient 34
centered-remainder 34
centered/ 34
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char->integer 42
char-alphabetic? 41
char-ci<=? 41
char-ci<? 41
char-ci=? 41
char-ci>=? 41
char-ci>? 41
char-downcase 42
char-foldcase 42
char-lower-case? 41
char-numeric? 41
char-ready? 53
char-upcase 42
char-upper-case? 41
char-whitespace? 41
char<=? 41
char<? 41
char=? 41
char>=? 41
char>? 41
char? 41; 9
close-input-port 52
close-output-port 52
close-port 52
comma 19
command-line 55
comment 8; 56
complex? 32; 30, 33
cond 13; 22, 62
cond-expand 27
cons 38
constant 10
continuation 48
cos 35
current exception handler 49
current-error-port 51
current-input-port 51
current-jiffy 55
current-output-port 51
current-second 55

#d 32
define 24; 20
define-syntax 25
define-values 24; 64
definition 23
delay 17
delete-file 55
denominator 35
digit-value 41
display 54
do 17; 64
dotted pair 37
dynamic-wind 49; 48

#e 32; 57

eager 18
else 14; 27
empty list 37; 9, 38
environment 50; 55, 10
environment variables 55
eof-object? 53
eq? 29
equal? 30
equivalence predicate 28
eqv? 28; 10, 61
error 5; 50
error-object-irritants 50
error-object-message 50
error-object? 50
escape procedure 47
escape sequence 42
euclidean-quotient 34
euclidean-remainder 34
euclidean/ 34
eval 50; 11
even? 33
exact 28
exact->inexact 36
exact-integer-sqrt 35
exact-integer? 33
exact? 33
exactness 30
except 26
exception handler 49
exit 55
exp 35
export 26
expt 36

#f 37
false 9; 37
fields 25
file-exists? 55
finite? 33
floor 35
floor-quotient 34
floor-remainder 34
floor/ 34
flush-output-port 54
fold-case@#!fold-case 8
for-each 47
force 17

gcd 34
get-environment-variable 55
get-environment-variables 55
get-output-bytevector 52
get-output-string 52
guard 19; 24

hygienic 20
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#i 32; 57
identifier 7; 9, 56
if 13; 60
imag-part 36
immutable 10
implementation extension 31
implementation restriction 6; 31
import 26
improper list 38
include 27
include-ci 27
inexact 28
inexact->exact 36; 30
inexact? 33
initial environment 28
input-port? 51
integer->char 42
integer? 32; 30
interaction-environment 51
internal definition 24
irritants 50

jiffies 55
jiffies-per-second 55

keyword 20

lambda 12; 24, 60
lazy 17
lazy evaluation 17
lcm 34
length 39; 31
let 15; 17, 22, 24, 63
let* 15; 24, 63
let*-values 16; 63
let-syntax 20; 24
let-values 16; 24, 63
let-values* 24
letrec 15; 24, 63
letrec* 16; 24, 63
letrec-syntax 21; 24
libraries 5
list 37; 39
list->string 44
list->vector 45
list-copy 40
list-ref 39
list-set! 39
list-tail 39
list? 38
load 54
location 10
log 35

macro 20
macro keyword 20

macro transformer 20
macro use 20
magnitude 36
make-bytevector 45
make-list 39
make-parameter 18
make-polar 36
make-rectangular 36
make-string 43
make-vector 44
map 46
max 33
member 39
memq 39
memv 39
min 33
modulo 34
mutable 10

nan? 33
negative? 33
newline 54
nil 37
no-fold-case@#!no-fold-case 8
not 37
null-environment 50
null? 38
number 30
number->string 36
number? 32; 9, 30, 33
numerator 35
numerical types 30

#o 32; 57
object 5
odd? 33
only 26
open-binary-input-file 52
open-binary-output-file 52
open-input-bytevector 52
open-input-file 52
open-input-string 52
open-output-bytevector 52
open-output-file 52
open-output-string 52
or 14; 62
output-port? 51

pair 37
pair? 38; 9
parameter object 18
parameterize 18; 24
peek-char 53
peek-u8 53
port 51
port-open? 51
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port? 51; 9
positive? 33
predicate 28
prefix 26
procedure 28
procedure call 12
procedure? 46; 9
program parts 23
promise 17
proper tail recursion 10

quasiquote 19; 38
quote 12; 38
quotient 34

raise 49
raise-continuable 49
rational? 32; 30
rationalize 35
read 52; 38, 57
read-bytevector 53
read-bytevector! 53
read-char 52
read-line 53
read-u8 53
real-part 36
real? 32; 30
record type definitions 25
record types 25
records 25
referentially transparent 20
region 9; 13, 15, 16, 17
remainder 34
rename 26
repl 23
reverse 39
round 35
round-quotient 34
round-remainder 34
round/ 34

scheme-report-environment 50
set! 13; 24, 60
set-car! 38
set-cdr! 38
setcar 61
simplest rational 35
sin 35
sqrt 35
string 43
string->list 44
string->number 37
string->symbol 40
string->utf8 46
string->vector 45
string-append 44

string-ci<=? 43
string-ci<? 43
string-ci=? 43
string-ci>=? 43
string-ci>? 43
string-copy 44
string-downcase 44
string-fill! 44
string-foldcase 44
string-for-each 47
string-length 43; 31
string-map 46
string-ni<=? 43
string-ni<? 43
string-ni=? 43
string-ni>=? 43
string-ni>? 43
string-ref 43
string-set! 43; 40
string-upcase 44
string<=? 43
string<? 43
string=? 43
string>=? 43
string>? 43
string? 42; 9
substring 44
symbol->string 40; 10
symbol? 40; 9
syntactic keyword 9; 7, 20
syntax definition 25
syntax-error 23
syntax-rules 25

#t 37
tail call 11
tan 35
textual-port? 51
token 56
top level environment 28; 9
true 9; 13, 14, 37
truncate 35
truncate-quotient 34
truncate-remainder 34
truncate/ 34
type 9

u8-ready? 53
unbound 9; 12, 24
unless 15
unquote 38
unquote-splicing 38
unspecified 6
utf8->string 46

valid indexes 42; 44, 45
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values 48; 12
variable 9; 7, 12
vector 44
vector->list 45
vector->string 45
vector-copy 45
vector-fill! 45
vector-for-each 47
vector-length 45; 31
vector-map 47
vector-ref 45
vector-set! 45
vector? 44; 9

when 14
whitespace 8
with-exception-handler 49
with-input-from-file 51
with-output-to-file 51
write 54; 20
write-bytevector 54
write-char 54
write-partial-bytevector 54
write-simple 54
write-u8 54

#x 32; 57

zero? 33
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