Revised7 Report on the Algorithmic Language
Scheme

Arex SHINN, JoHN COWAN, AND ARTHUR A. GLECKLER (Editors)

STEVEN GANZ ALEXEY RADUL OLIN SHIVERS
AaroNn W. Hsu JEFFREY T. READ ALARIC SNELL-Pym
BRrRADLEY LUCIER Davip Rusu GERALD J. SUSSMAN
EMMANUEL MEDERNACH BenjaMmiIN L. RUSSEL

RicHARD KELSEY, WiLLIAM CLINGER, AND JONATHAN REES
(Editors, Revised® Report on the Algorithmic Language Scheme)

MiICHAEL SPERBER, R. KENT DvyBvIG, MATTHEW FLATT, AND ANTON VAN STRAATEN
(Editors, Revised® Report on the Algorithmic Language Scheme)

Dedicated to the memory of John McCarthy and Daniel Weinreb

July 6, 2013

2 Revised” Scheme

SUMMARY

The report gives a defining description of the program-
ming language Scheme. Scheme is a statically scoped and
properly tail recursive dialect of the Lisp programming lan-
guage [23] invented by Guy Lewis Steele Jr. and Gerald
Jay Sussman. It was designed to have exceptionally clear
and simple semantics and few different ways to form ex-
pressions. A wide variety of programming paradigms, in-
cluding imperative, functional, and object-oriented styles,
find convenient expression in Scheme.

The introduction offers a brief history of the language and
of the report.

The first three chapters present the fundamental ideas of
the language and describe the notational conventions used
for describing the language and for writing programs in the
language.

Chapters [] and [§] describe the syntax and semantics of
expressions, definitions, programs, and libraries.

Chapter [6] describes Scheme’s built-in procedures, which
include all of the language’s data manipulation and in-
put/output primitives.

Chapter [7] provides a formal syntax for Scheme written in
extended BNF, along with a formal denotational semantics.
An example of the use of the language follows the formal
syntax and semantics.

Appendix [A] provides a list of the standard libraries and
the identifiers that they export.

Appendix [B] provides a list of optional but standardized
implementation feature names.

The report concludes with a list of references and an al-
phabetic index.

Note: The editors of the R°RS and R°RS reports are listed as
authors of this report in recognition of the substantial portions
of this report that are copied directly from R°RS and R°RS.
There is no intended implication that those editors, individually
or collectively, support or do not support this report.

CONTENTS

Mofroductionl . - . -+« o vt 3
I Overview of Schemel. 5
LI Semanticd - . - -« o v v v oo 5
--------------------------- 5
|L.3 Notation and terminology| 5
2_Lexical conventions|o 7
Bl Tdenfifferdo 7
|2.2 Whitespace and comments|. 8
23 _Other notationd 8
BZ DatumTabels . . - o v oo 9
.......................... 9
3.1 Variables, syntactic keywords, and regions| 9
3.2 Disjointness of types|o 10
13.3 External representations| 10
13.4 Storage model|. oo 10
3.5 Proper tail recursion|o 11
........................... 12
4.1 Primitive expression types| 12
4.2 Derived expression types|. 14
E3Macrod. . - 21

|5 Program structure|.o o000 25
......................... 25
5.2 Import declarations|. 25
.3 Variable definitionsl 25
5.4 Syntax definitions| 26
5.5 Record-type definitions|. 27
BE6 Tibrarfesl. - . -« v v v e 28
5 N Y 01 2 29

|6 Standard procedures| Lo 30
6.1 Equivalence predicates| 30
6.2 Numbers. Lo 32
B3 Booleansl. . . - . - o .o 40
B4 Pairsandlistsl. 40
6.5 Symbols| 43
B8 _Charactersl. - - « « « v v v vve e 44
6.7 Strings|.o 45

0.8 Vectorsl 48

6.9 Bytevectors| 49
16.10 Control features|. 50
........................ 54
6.12 Fnvironments and evaluationl 55
16.13 Input and output| 55
16.14 System interfacel Lo 59

|7 _Formal syntax and semantics|. 61
[7.1 Formal syntax|. 61
I7.2 Formal semantics| 65
|7.3 Derived expression types|. 68
IA_Standard Tibrariesl 73
[B_Standard Feature Identifiersl 7
......................... 77
IAdditional materiall 80
xample|.o oo 81
[Referencesl. o o 81

Alphabetic index of definitions of concepts |
keywords, and procedures|

Introduction 3

INTRODUCTION

Programming languages should be designed not by piling
feature on top of feature, but by removing the weaknesses
and restrictions that make additional features appear nec-
essary. Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions on how
they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support
most of the major programming paradigms in use today.

Scheme was one of the first programming languages to in-
corporate first-class procedures as in the lambda calculus,
thereby proving the usefulness of static scope rules and
block structure in a dynamically typed language. Scheme
was the first major dialect of Lisp to distinguish procedures
from lambda expressions and symbols, to use a single lex-
ical environment for all variables, and to evaluate the op-
erator position of a procedure call in the same way as an
operand position. By relying entirely on procedure calls
to express iteration, Scheme emphasized the fact that tail-
recursive procedure calls are essentially GOTOs that pass
arguments, thus allowing a programming style that is both
coherent and efficient. Scheme was the first widely used
programming language to embrace first-class escape proce-
dures, from which all previously known sequential control
structures can be synthesized. A subsequent version of
Scheme introduced the concept of exact and inexact num-
bers, an extension of Common Lisp’s generic arithmetic.
More recently, Scheme became the first programming lan-
guage to support hygienic macros, which permit the syntax
of a block-structured language to be extended in a consis-
tent and reliable manner.

Background

The first description of Scheme was written in 1975 [35]. A
revised report [3I] appeared in 1978, which described the
evolution of the language as its MIT implementation was
upgraded to support an innovative compiler [32]. Three
distinct projects began in 1981 and 1982 to use variants
of Scheme for courses at MIT, Yale, and Indiana Univer-
sity [27, [24] [T4]. An introductory computer science text-
book using Scheme was published in 1984 [1].

As Scheme became more widespread, local dialects be-
gan to diverge until students and researchers occasion-
ally found it difficult to understand code written at other
sites. Fifteen representatives of the major implementations
of Scheme therefore met in October 1984 to work toward
a better and more widely accepted standard for Scheme.
Their report, the RRRS [8], was published at MIT and In-
diana University in the summer of 1985. Further revision
took place in the spring of 1986, resulting in the R®RS [29].
Work in the spring of 1988 resulted in R*RS [10], which
became the basis for the IEEE Standard for the Scheme

Programming Language in 1991 [I8]. In 1998, several ad-
ditions to the IEEE standard, including high-level hygienic
macros, multiple return values, and eval, were finalized as
the R5RS [20].

In the fall of 2006, work began on a more ambitious stan-
dard, including many new improvements and stricter re-
quirements made in the interest of improved portability.
The resulting standard, the R°RS, was completed in Au-
gust 2007 [33], and was organized as a core language and set
of mandatory standard libraries. Several new implementa-
tions of Scheme conforming to it were created. However,
most existing RORS implementations (even excluding those
which are essentially unmaintained) did not adopt RRS,
or adopted only selected parts of it.

In consequence, the Scheme Steering Committee decided in
August 2009 to divide the standard into two separate but
compatible languages — a “small” language, suitable for
educators, researchers, and users of embedded languages,
focused on R°RS compatibility, and a “large” language fo-
cused on the practical needs of mainstream software de-
velopment, intended to become a replacement for R6RS.
The present report describes the “small” language of that
effort: therefore it cannot be considered in isolation as the
successor to R6RS.

We intend this report to belong to the entire Scheme com-
munity, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementers
of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.

Acknowledgments

We would like to thank the members of the Steering
Committee, William Clinger, Marc Feeley, Chris Hanson,
Jonathan Rees, and Olin Shivers, for their support and
guidance.

This report is very much a community effort, and we’d
like to thank everyone who provided comments and feed-
back, including the following people: David Adler, Eli
Barzilay, Taylan Ulrich Bayirh/Kammer, Marco Benelli,
Pierpaolo Bernardi, Peter Bex, Per Bothner, John Boyle,
Taylor Campbell, Raffael Cavallaro, Ray Dillinger, Biep
Durieux, Sztefan Edwards, Helmut Eller, Justin Ethier,
Jay Reynolds Freeman, Tony Garnock-Jones, Alan Manuel
Gloria, Steve Hafner, Sven Hartrumpf, Brian Harvey,
Moritz Heidkamp, Jean-Michel Hufflen, Aubrey Jaffer,
Takashi Kato, Shiro Kawai, Richard Kelsey, Oleg Kiselyov,
Pjotr Kourzanov, Jonathan Kraut, Daniel Krueger, Chris-
tian Stigen Larsen, Noah Lavine, Stephen Leach, Larry D.
Lee, Kun Liang, Thomas Lord, Vincent Stewart Manis,
Perry Metzger, Michael Montague, Mikael More, Vitaly

4 Revised” Scheme

Magerya, Vincent Manis, Vassil Nikolov, Joseph Wayne
Norton, Yuki Okumura, Daichi Oohashi, Jeronimo Pel-
legrini, Jussi Piitulainen, Alex Queiroz, Jim Rees, Grant
Rettke, Andrew Robbins, Devon Schudy, Bakul Shah,
Robert Smith, Arthur Smyles, Michael Sperber, John
David Stone, Jay Sulzberger, Malcolm Tredinnick, Sam
Tobin-Hochstadt, Andre van Tonder, Daniel Villeneuve,
Denis Washington, Alan Watson, Mark H. Weaver, Géran
Weinholt, David A. Wheeler, Andy Wingo, James Wise,
Jorg F. Wittenberger, Kevin A. Wortman, Sascha Zie-
mann.

In addition we would like to thank all the past editors, and
the people who helped them in turn: Hal Abelson, Nor-
man Adams, David Bartley, Alan Bawden, Michael Blair,
Gary Brooks, George Carrette, Andy Cromarty, Pavel Cur-
tis, Jeff Dalton, Olivier Danvy, Ken Dickey, Bruce Duba,
Robert Findler, Andy Freeman, Richard Gabriel, Yekta
Giirsel, Ken Haase, Robert Halstead, Robert Hieb, Paul
Hudak, Morry Katz, Eugene Kohlbecker, Chris Lindblad,
Jacob Matthews, Mark Meyer, Jim Miller, Don Oxley, Jim
Philbin, Kent Pitman, John Ramsdell, Guillermo Rozas,
Mike Shaff, Jonathan Shapiro, Guy Steele, Julie Sussman,
Perry Wagle, Mitchel Wand, Daniel Weise, Henry Wu, and
Ozan Yigit. We thank Carol Fessenden, Daniel Friedman,
and Christopher Haynes for permission to use text from the
Scheme 311 version 4 reference manual. We thank Texas
Instruments, Inc. for permission to use text from the TT7
Scheme Language Reference Manual [37]. We gladly ac-
knowledge the influence of manuals for MIT Scheme [24],
T [28], Scheme 84 [I5], Common Lisp [34], and Algol
60 [25], as well as the following SRFIs: 0, 1, 4, 6, 9, 11, 13,
16, 30, 34, 39, 43, 46, 62, and 87, all of which are available
at http://srfi.schemers.org.

1. Overview of Scheme 5

DESCRIPTION OF THE LANGUAGE

1. Overview of Scheme

1.1. Semantics

This section gives an overview of Scheme’s semantics. A
detailed informal semantics is the subject of chapters
through [6] For reference purposes, section provides a
formal semantics of Scheme.

Scheme is a statically scoped programming language. Each
use of a variable is associated with a lexically apparent
binding of that variable.

Scheme is a dynamically typed language. Types are asso-
ciated with values (also called objects) rather than with
variables. Statically typed languages, by contrast, asso-
ciate types with variables and expressions as well as with
values.

All objects created in the course of a Scheme computation,
including procedures and continuations, have unlimited ex-
tent. No Scheme object is ever destroyed. The reason that
implementations of Scheme do not (usually!) run out of
storage is that they are permitted to reclaim the storage
occupied by an object if they can prove that the object
cannot possibly matter to any future computation.

Implementations of Scheme are required to be properly
tail-recursive. This allows the execution of an iterative
computation in constant space, even if the iterative compu-
tation is described by a syntactically recursive procedure.
Thus with a properly tail-recursive implementation, iter-
ation can be expressed using the ordinary procedure-call
mechanics, so that special iteration constructs are useful
only as syntactic sugar. See section |3.5

Scheme procedures are objects in their own right. Proce-
dures can be created dynamically, stored in data structures,
returned as results of procedures, and so on.

One distinguishing feature of Scheme is that continuations,
which in most other languages only operate behind the
scenes, also have “first-class” status. Continuations are
useful for implementing a wide variety of advanced control
constructs, including non-local exits, backtracking, and
coroutines. See section

Arguments to Scheme procedures are always passed by
value, which means that the actual argument expressions
are evaluated before the procedure gains control, regardless
of whether the procedure needs the result of the evaluation.

Scheme’s model of arithmetic is designed to remain as in-
dependent as possible of the particular ways in which num-
bers are represented within a computer. In Scheme, every
integer is a rational number, every rational is a real, and
every real is a complex number. Thus the distinction be-
tween integer and real arithmetic, so important to many
programming languages, does not appear in Scheme. In

its place is a distinction between exact arithmetic, which
corresponds to the mathematical ideal, and inexact arith-
metic on approximations. Exact arithmetic is not limited
to integers.

1.2. Syntax

Scheme, like most dialects of Lisp, employs a fully paren-
thesized prefix notation for programs and other data; the
grammar of Scheme generates a sublanguage of the lan-
guage used for data. An important consequence of this
simple, uniform representation is that Scheme programs
and data can easily be treated uniformly by other Scheme
programs. For example, the eval procedure evaluates a
Scheme program expressed as data.

The read procedure performs syntactic as well as lexical
decomposition of the data it reads. The read procedure
parses its input as data (section [7.1.2)), not as program.

The formal syntax of Scheme is described in section [7.1

1.3. Notation and terminology

1.3.1. Base and optional features

Every identifier defined in this report appears in one or
more of several libraries. Identifiers defined in the base li-
brary are not marked specially in the body of the report.
This library includes the core syntax of Scheme and gener-
ally useful procedures that manipulate data. For example,
the variable abs is bound to a procedure of one argument
that computes the absolute value of a number, and the
variable + is bound to a procedure that computes sums.
The full list all the standard libraries and the identifiers
they export is given in Appendix [A]

All implementations of Scheme:

e Must provide the base library and all the identifiers
exported from it.

e May provide or omit the other libraries given in this
report, but each library must either be provided in
its entirety, exporting no additional identifiers, or else
omitted altogether.

e May provide other libraries not described in this re-
port.

e May also extend the function of any identifier in this
report, provided the extensions are not in conflict with
the language reported here.

e Must support portable code by providing a mode of
operation in which the lexical syntax does not conflict
with the lexical syntax described in this report.

6 Revised” Scheme

1.3.2. Error situations and unspecified behavior

When speaking of an error situation, this report uses the
phrase “an error is signaled” to indicate that implementa-
tions must detect and report the error. An error is signaled
by raising a non-continuable exception, as if by the proce-
dure raise as described in section The object raised
is implementation-dependent and need not be distinct from
objects previously used for the same purpose. In addition
to errors signaled in situations described in this report, pro-
grammers can signal their own errors and handle signaled
errors.

The phrase “an error that satisfies predicate is signaled”
means that an error is signaled as above. Furthermore, if
the object that is signaled is passed to the specified predi-
cate (such as file-error? or read-error?), the predicate
returns #t.

If such wording does not appear in the discussion of an er-
ror, then implementations are not required to detect or
report the error, though they are encouraged to do so.
Such a situation is sometimes, but not always, referred
to with the phrase “an error.” In such a situation, an im-
plementation may or may not signal an error; if it does
signal an error, the object that is signaled may or may
not satisfy the predicates error-object?, file-error?,
or read-error?. Alternatively, implementations may pro-
vide non-portable extensions.

For example, it is an error for a procedure to be passed
an argument of a type that the procedure is not explicitly
specified to handle, even though such domain errors are
seldom mentioned in this report. Implementations may
signal an error, extend a procedure’s domain of definition
to include such arguments, or fail catastrophically.

This report uses the phrase “may report a violation of an
implementation restriction” to indicate circumstances un-
der which an implementation is permitted to report that
it is unable to continue execution of a correct program
because of some restriction imposed by the implementa-
tion. Implementation restrictions are discouraged, but im-
plementations are encouraged to report violations of im-
plementation restrictions.

For example, an implementation may report a violation of
an implementation restriction if it does not have enough
storage to run a program, or if an arithmetic operation
would produce an exact number that is too large for the
implementation to represent.

If the value of an expression is said to be “unspecified,”
then the expression must evaluate to some object without
signaling an error, but the value depends on the imple-
mentation; this report explicitly does not say what value
is returned.

Finally, the words and phrases “must,” “must not,”
“shall,” “shall not,” “should,” “should not,” “may,” “re-
quired,” “recommended,” and “optional,” although not

capitalized in this report, are to be interpreted as described
in RFC 2119 [3]. They are used only with reference to im-
plementer or implementation behavior, not with reference
to programmer or program behavior.

1.3.3. Entry format

Chapters [4] and [6] are organized into entries. Each entry
describes one language feature or a group of related fea-
tures, where a feature is either a syntactic construct or a
procedure. An entry begins with one or more header lines
of the form

template category

for identifiers in the base library, or

template name library category

where name is the short name of a library as defined in
Appendix [A]

If category is “syntax,” the entry describes an expression
type, and the template gives the syntax of the expression
type. Components of expressions are designated by syn-
tactic variables, which are written using angle brackets,
for example (expression) and (variable). Syntactic vari-
ables are intended to denote segments of program text; for
example, (expression) stands for any string of characters
which is a syntactically valid expression. The notation

indicates zero or more occurrences of a (thing), and

<th1ng1) <th11’lg2> ce
indicates one or more occurrences of a (thing).

If category is “auxiliary syntax,” then the entry describes
a syntax binding that occurs only as part of specific sur-
rounding expressions. Any use as an independent syntactic
construct or variable is an error.

If category is “procedure,” then the entry describes a pro-
cedure, and the header line gives a template for a call to the
procedure. Argument names in the template are italicized.
Thus the header line

(vector-ref wector k) procedure

indicates that the procedure bound to the vector-ref
variable takes two arguments, a vector vector and an exact
non-negative integer k (see below). The header lines

(make-vector k)
(make-vector k fill)

procedure
procedure

indicate that the make-vector procedure must be defined
to take either one or two arguments.

It is an error for a procedure to be presented with an ar-
gument that it is not specified to handle. For succinctness,
we follow the convention that if an argument name is also

the name of a type listed in section[3:2} then it is an error if
that argument is not of the named type. For example, the
header line for vector-ref given above dictates that the
first argument to vector-ref is a vector. The following
naming conventions also imply type restrictions:

alist association list (list of pairs)
boolean boolean value (#t or #f)
byte exact integer 0 < byte < 256
bytevector bytevector

char character

end exact non-negative integer
ky ki, .. kj, . exact non-negative integer
letter alphabetic character

list, listy, ... listj, ... list (see section

T, N1, ove My e integer

obj any object

pair pair

port port

proc procedure

G, qis -+ Qs - rational number

start exact non-negative integer
string string

symbol symbol

thunk zero-argument procedure
vector vector

T, Tl oo Ty oo real number

Yy Yby - Yjy - real number

Zy By een Zjy e e complex number

The names start and end are used as indexes into strings,
vectors, and bytevectors. Their use implies the following:

e It is an error if start is greater than end.

e It is an error if end is greater than the length of the
string, vector, or bytevector.

e If start is omitted, it is assumed to be zero.

e If end is omitted, it assumed to be the length of the
string, vector, or bytevector.

e The index start is always inclusive and the index end
is always exclusive. As an example, consider a string.
If start and end are the same, an empty substring is
referred to, and if start is zero and end is the length
of string, then the entire string is referred to.

1.3.4. Evaluation examples

The symbol “=" used in program examples is read “eval-
uates to.” For example,

(x 5 8) = 40

2. Lexical conventions 7

means that the expression (x 5 8) evaluates to the ob-
ject 40. Or, more precisely: the expression given by the
sequence of characters “(* 5 8)” evaluates, in the initial
environment, to an object that can be represented exter-
nally by the sequence of characters “40.” See section [3.3
for a discussion of external representations of objects.

1.3.5. Naming conventions

By convention, 7 is the final character of the names of
procedures that always return a boolean value. Such pro-
cedures are called predicates. Predicates are generally un-
derstood to be side-effect free, except that they may raise
an exception when passed the wrong type of argument.

Similarly, ! is the final character of the names of proce-
dures that store values into previously allocated locations
(see section. Such procedures are called mutation pro-
cedures. The value returned by a mutation procedure is
unspecified.

By convention, “->” appears within the names of proce-
dures that take an object of one type and return an anal-
ogous object of another type. For example, list->vector
takes a list and returns a vector whose elements are the
same as those of the list.

A command is a procedure that does not return useful val-
ues to its continuation.

A thunk is a procedure that does not accept arguments.

2. Lexical conventions

This section gives an informal account of some of the lexical
conventions used in writing Scheme programs. For a formal
syntax of Scheme, see section

2.1. Identifiers

An identifier is any sequence of letters, digits, and “ex-
tended identifier characters” provided that it does not have
a prefix which is a valid number. However, the . token (a
single period) used in the list syntax is not an identifier.

All implementations of Scheme must support the following
extended identifier characters:

'S h&*x+- ./ :<=>720" _"~

Alternatively, an identifier can be represented by a se-
quence of zero or more characters enclosed within vertical
lines (|), analogous to string literals. Any character, in-
cluding whitespace characters, but excluding the backslash
and vertical line characters, can appear verbatim in such
an identifier. In addition, characters can be specified using
either an (inline hex escape) or the same escapes available
in strings.

8 Revised” Scheme

For example, the identifier |H\x65;110/ is the same iden-
tifier as Hello, and in an implementation that supports
the appropriate Unicode character the identifier | \x3BB; |
is the same as the identifier A. What is more, [\t\t| and
I\x9;\x9; | are the same. Note that | | is a valid identifier
that is different from any other identifier.

Here are some examples of identifiers:

+

+soup+ <=7

->string a34kTMNs
lambda list->vector

q Vi7a

|two words| |two\x20;words|

the-word-recursion-has-many-meanings

See section for the formal syntax of identifiers.

Identifiers have two uses within Scheme programs:

e Any identifier can be used as a variable or as a syn-
tactic keyword (see sections [3.1) and |4.3]).

e When an identifier appears as a literal or within a

literal (see section [4.1.2)), it is being used to denote a
53).

symbol (see section

In contrast with earlier revisions of the report [20], the
syntax distinguishes between upper and lower case in iden-
tifiers and in characters specified using their names. How-
ever, it does not distinguish between upper and lower case
in numbers, nor in (inline hex escapes) used in the syntax
of identifiers, characters, or strings. None of the identi-
fiers defined in this report contain upper-case characters,
even when they appear to do so as a result of the English-
language convention of capitalizing the first word of a sen-
tence.

The following directives give explicit control over case fold-
ing.

#!fold-case
#!'no-fold-case

These directives can appear anywhere comments are per-
mitted (see section but must be followed by a de-
limiter. They are treated as comments, except that
they affect the reading of subsequent data from the same
port. The #!fold-case directive causes subsequent iden-
tifiers and character names to be case-folded as if by
string-foldcase (see section [6.7). It has no effect on
character literals. The #!no-fold-case directive causes a
return to the default, non-folding behavior.

2.2. Whitespace and comments

Whitespace characters include the space, tab, and new-
line characters. (Implementations may provide additional
whitespace characters such as page break.) Whitespace is
used for improved readability and as necessary to separate
tokens from each other, a token being an indivisible lexi-
cal unit such as an identifier or number, but is otherwise
insignificant. Whitespace can occur between any two to-
kens, but not within a token. Whitespace occurring inside
a string or inside a symbol delimited by vertical lines is
significant.

The lexical syntax includes several comment forms. Com-
ments are treated exactly like whitespace.

A semicolon (;) indicates the start of a line comment. The
comment continues to the end of the line on which the
semicolon appears.

Another way to indicate a comment is to prefix a (datum)
(cf. section with #; and optional (whitespace). The
comment consists of the comment prefix #;, the space, and
the (datum) together. This notation is useful for “com-
menting out” sections of code.

Block comments are indicated with properly nested #| and
| # pairs.

#]
The FACT procedure computes the factorial
of a non-negative integer.
| #
(define fact
(lambda (n)
(if (=n 0)
#;(=n 1)
1 ;Base case: return 1

(* n (fact (- n 1))))))

2.3. Other notations

For a description of the notations used for numbers, see
section

. + — These are used in numbers, and can also occur any-
where in an identifier. A delimited plus or minus sign
by itself is also an identifier. A delimited period (not
occurring within a number or identifier) is used in the
notation for pairs (section, and to indicate a rest-
parameter in a formal parameter list (section [4.1.4)).
Note that a sequence of two or more periods is an
identifier.

() Parentheses are used for grouping and to notate lists

(section [6.4)).

> The apostrophe (single quote) character is used to indi-
cate literal data (section |4.1.2)).

The grave accent (backquote) character is used to indi-
cate partly constant data (section |4.2.8)).

, ,@ The character comma and the sequence comma at-
sign are used in conjunction with quasiquotation (sec-

tion [4.2.8)).

" The quotation mark character is used to delimit strings

(section [6.7).

\ Backslash is used in the syntax for character constants
(section [6.6)) and as an escape character within string

constants (section [6.7) and identifiers (section |7.1.1)).

[1 { } Left and right square and curly brackets (braces)
are reserved for possible future extensions to the lan-
guage.

The number sign is used for a variety of purposes de-
pending on the character that immediately follows it:

#t #f These are the boolean constants (section[6.3]), along
with the alternatives #true and #false.

#\ This introduces a character constant (section .

#(This introduces a vector constant (section . Vector
constants are terminated by) .

#u8(This introduces a bytevector constant (section .
Bytevector constants are terminated by) .

#e #i #b #o #d #x These are used in the notation for
numbers (section [6.2.5)).

#(n)= #(n)# These are used for labeling and referencing
other literal data (section [2.4)).

2.4. Datum labels

#(n)=(datum)
#(n)#

lexical syntax
lexical syntax

The lexical syntax #(n)=(datum) reads the same as
(datum), but also results in (datum) being labelled by (n).
It is an error if (n) is not a sequence of digits.

The lexical syntax #(n)# serves as a reference to some ob-
ject labelled by #(n)=; the result is the same object as the

#(n)= (see section [6.1).

Together, these syntaxes permit the notation of structures
with shared or circular substructure.

(let ((x (list ’a ’b ’c)))
(set-cdr! (cddr x) x)

x) = #0=(a b c . #O0#)

3. Basic concepts 9

The scope of a datum label is the portion of the outermost
datum in which it appears that is to the right of the label.
Consequently, a reference #(n)# can occur only after a la-
bel #(n)=; it is an error to attempt a forward reference. In
addition, it is an error if the reference appears as the la-
belled object itself (as in #(n)= #(n)#), because the object
labelled by #(n)= is not well defined in this case.

It is an error for a (program) or (library) to include circular
references except in literals. In particular, it is an error for
quasiquote (section 4.2.8)) to contain them.

#1=(begin (display #\x) #1#)
= error

3. Basic concepts

3.1. Variables, syntactic keywords, and re-
gions

An identifier can name either a type of syntax or a location
where a value can be stored. An identifier that names a
type of syntax is called a syntactic keyword and is said to be
bound to a transformer for that syntax. An identifier that
names a location is called a variable and is said to be bound
to that location. The set of all visible bindings in effect at
some point in a program is known as the environment in
effect at that point. The value stored in the location to
which a variable is bound is called the variable’s value.
By abuse of terminology, the variable is sometimes said
to name the value or to be bound to the value. This is
not quite accurate, but confusion rarely results from this
practice.

Certain expression types are used to create new kinds of
syntax and to bind syntactic keywords to those new syn-
taxes, while other expression types create new locations
and bind variables to those locations. These expression
types are called binding constructs. Those that bind syn-
tactic keywords are listed in section The most fun-
damental of the variable binding constructs is the lambda
expression, because all other variable binding constructs
can be explained in terms of lambda expressions. The
other variable binding constructs are let, let*, letrec,
letrecx, let-values, let*-values, and do expressions
(see sections [4.1.4] [4.2.2 and |4.2.4]).

Scheme is a language with block structure. To each place
where an identifier is bound in a program there corresponds
a region of the program text within which the binding is
visible. The region is determined by the particular bind-
ing construct that establishes the binding; if the binding is
established by a lambda expression, for example, then its
region is the entire lambda expression. Every mention of
an identifier refers to the binding of the identifier that es-
tablished the innermost of the regions containing the use.

10 Revised” Scheme

If there is no binding of the identifier whose region con-
tains the use, then the use refers to the binding for the
variable in the global environment, if any (chapters |4f and
@; if there is no binding for the identifier, it is said to be
unbound.

3.2. Disjointness of types

No object satisfies more than one of the following predi-
cates:

boolean? bytevector?
char? eof-object?
null? number?
pair? port?
procedure? string?
symbol? vector?

and all predicates created by define-record-type.

These predicates define the types boolean, bytevector, char-
acter, the empty list object, eof-object, number, pair, port,
procedure, string, symbol, vector, and all record types.

Although there is a separate boolean type, any Scheme
value can be used as a boolean value for the purpose of
a conditional test. As explained in section [6.3] all values
count as true in such a test except for #£f. This report uses
the word “true” to refer to any Scheme value except #f,
and the word “false” to refer to #f.

3.3. External representations

An important concept in Scheme (and Lisp) is that of the
external representation of an object as a sequence of char-
acters. For example, an external representation of the inte-
ger 28 is the sequence of characters “28”, and an external
representation of a list consisting of the integers 8 and 13
is the sequence of characters “(8 13)”.

The external representation of an object is not neces-

sarily unique. The integer 28 also has representations

“#€28.000” and “#x1c”, and the list in the previous para-

graph also has the representations “(08 13)” and “(8
(13 . (0))” (see section [6.4).

Many objects have standard external representations, but
some, such as procedures, do not have standard represen-
tations (although particular implementations may define
representations for them).

An external representation can be written in a program to
obtain the corresponding object (see quote, section .
External representations can also be used for input and
output. The procedure read (section parses ex-
ternal representations, and the procedure write (sec-
tion generates them. Together, they provide an
elegant and powerful input/output facility.

Note that the sequence of characters “(+ 2 6)” is not an
external representation of the integer 8, even though it is an
expression evaluating to the integer 8; rather, it is an exter-
nal representation of a three-element list, the elements of
which are the symbol + and the integers 2 and 6. Scheme’s
syntax has the property that any sequence of characters
that is an expression is also the external representation of
some object. This can lead to confusion, since it is not
always obvious out of context whether a given sequence of
characters is intended to denote data or program, but it is
also a source of power, since it facilitates writing programs
such as interpreters and compilers that treat programs as
data (or vice versa).

The syntax of external representations of various kinds of
objects accompanies the description of the primitives for
manipulating the objects in the appropriate sections of
chapter [6]

3.4. Storage model

Variables and objects such as pairs, strings, vectors, and
bytevectors implicitly denote locations or sequences of lo-
cations. A string, for example, denotes as many locations
as there are characters in the string. A new value can be
stored into one of these locations using the string-set!
procedure, but the string continues to denote the same lo-
cations as before.

An object fetched from a location, by a variable reference or
by a procedure such as car, vector-ref, or string-ref,
is equivalent in the sense of eqv? (section to the object
last stored in the location before the fetch.

Every location is marked to show whether it is in use. No
variable or object ever refers to a location that is not in
use.

Whenever this report speaks of storage being newly allo-
cated for a variable or object, what is meant is that an
appropriate number of locations are chosen from the set
of locations that are not in use, and the chosen locations
are marked to indicate that they are now in use before the
variable or object is made to denote them. Notwithstand-
ing this, it is understood that the empty list cannot be
newly allocated, because it is a unique object. It is also
understood that empty strings, empty vectors, and empty
bytevectors, which contain no locations, may or may not
be newly allocated.

Every object that denotes locations is either mutable or
immutable. Literal constants, the strings returned by
symbol->string, and possibly the environment returned
by scheme-report-environment are immutable objects.
All objects created by the other procedures listed in this
report are mutable. It is an error to attempt to store a
new value into a location that is denoted by an immutable
object.

These locations are to be understood as conceptual, not
physical. Hence, they do not necessarily correspond to
memory addresses, and even if they do, the memory ad-
dress might not be constant.

Rationale: In many systems it is desirable for constants (i.e.
the values of literal expressions) to reside in read-only memory.
Making it an error to alter constants permits this implementa-
tion strategy, while not requiring other systems to distinguish

between mutable and immutable objects.

3.5. Proper tail recursion

Implementations of Scheme are required to be properly tail-
recursive. Procedure calls that occur in certain syntactic
contexts defined below are tail calls. A Scheme imple-
mentation is properly tail-recursive if it supports an un-
bounded number of active tail calls. A call is active if
the called procedure might still return. Note that this in-
cludes calls that might be returned from either by the cur-
rent continuation or by continuations captured earlier by
call-with-current-continuation that are later invoked.
In the absence of captured continuations, calls could return
at most once and the active calls would be those that had
not yet returned. A formal definition of proper tail recur-
sion can be found in [6].

Rationale:

Intuitively, no space is needed for an active tail call because the
continuation that is used in the tail call has the same semantics
as the continuation passed to the procedure containing the call.
Although an improper implementation might use a new con-
tinuation in the call, a return to this new continuation would
be followed immediately by a return to the continuation passed
to the procedure. A properly tail-recursive implementation re-
turns to that continuation directly.

Proper tail recursion was one of the central ideas in Steele and
Sussman’s original version of Scheme. Their first Scheme in-
terpreter implemented both functions and actors. Control flow
was expressed using actors, which differed from functions in
that they passed their results on to another actor instead of
returning to a caller. In the terminology of this section, each
actor finished with a tail call to another actor.

Steele and Sussman later observed that in their interpreter the
code for dealing with actors was identical to that for functions
and thus there was no need to include both in the language.

A tail call is a procedure call that occurs in a tail con-
text. Tail contexts are defined inductively. Note that a tail
context is always determined with respect to a particular
lambda expression.

e The last expression within the body of a lambda ex-
pression, shown as (tail expression) below, occurs in
a tail context. The same is true of all the bodies of
case-lambda expressions.

3. Basic concepts

(lambda (formals)

(definition)* (expression)*

(tail expression))

(case-lambda ((formals) (tail body))*)

11

If one of the following expressions is in a tail context,

then the subexpressions shown as (tail expression) are

in a tail context. These were derived from rules in the
grammar given in chapter [7] by replacing some occur-
rences of (body) with (tail body), some occurrences of
(expression) with (tail expression), and some occur-

rences of (sequence) with (tail sequence). Only those

rules that contain tail contexts are shown here.

(if (expression) (tail expression) (tail expression))

(if (expression) (tail expression))

(cond {cond clause)™)
(cond (cond clause)* (else (tail sequence)))

(case (expression)
(case clause)™)
(case (expression)
(case clause)*
(else (tail sequence)))

(and (expression)* (tail expression))
(or (expression)* (tail expression))

(when (test) (tail sequence))
(unless (test) (tail sequence))

(let ((binding spec)®) (tail body))

(let (variable) ((binding spec)*) (tail body))
(let* ((binding spec)*) (tail body))

(letrec ((binding spec)*) (tail body))
(letrec* ((binding spec)*) (tail body))
(let-values ({mv binding spec)*) (tail body))
(let*-values ({mv binding spec)*) (tail body))

(let-syntax ((syntax spec)*) (tail body))
(letrec-syntax ((syntax spec)*) (tail body))

(begin (tail sequence))
(do ((iteration spec)*)
({test) (tail sequence))
(expression)*)

where

(cond clause) — ((test) (tail sequence))
(case clause) — (({datum)*) (tail sequence))

12 Revised” Scheme

(tail body) — (definition)* (tail sequence)
(tail sequence) — (expression)* (tail expression)

e If a cond or case expression is in a tail con-
text, and has a clause of the form ({expression;) =>
(expressions)) then the (implied) call to the proce-
dure that results from the evaluation of (expressions)
is in a tail context. (expressionsg) itself is not in a tail
context.

Certain procedures defined in this report are also re-
quired to perform tail calls. The first argument passed
to apply and to call-with-current-continuation, and
the second argument passed to call-with-values, must
be called via a tail call. Similarly, eval must evaluate its
first argument as if it were in tail position within the eval
procedure.
In the following example the only tail call is the call to f.
None of the calls to g or h are tail calls. The reference to
x is in a tail context, but it is not a call and thus is not a
tail call.

(lambda ()

(if (g
(let ((x (h)))
x)

(and (g) (£))))

Note: Implementations may recognize that some non-tail calls,
such as the call to h above, can be evaluated as though they
were tail calls. In the example above, the let expression could
be compiled as a tail call to h. (The possibility of h return-
ing an unexpected number of values can be ignored, because
in that case the effect of the let is explicitly unspecified and
implementation-dependent.)

4. Expressions

Expression types are categorized as primitive or derived.
Primitive expression types include variables and procedure
calls. Derived expression types are not semantically primi-
tive, but can instead be defined as macros. Suitable syntax
definitions of some of the derived expressions are given in

section [T.3]

The procedures force, promise?, make-promise, and
make-parameter are also described in this chapter be-
cause they are intimately associated with the delay,
delay-force, and parameterize expression types.

4.1. Primitive expression types
4.1.1. Variable references

(variable) syntax

An expression consisting of a variable (section [3.1) is a

variable reference. The value of the variable reference is
the value stored in the location to which the variable is
bound. It is an error to reference an unbound variable.

(define x 28)
b'd — 28

4.1.2. Literal expressions

(quote (datum)) syntax
> (datum) syntax
(constant) syntax

(quote (datum)) evaluates to (datum). (Datum) can be
any external representation of a Scheme object (see sec-
tion . This notation is used to include literal constants
in Scheme code.

(quote a) — a
(quote #(a b c)) = #(a b c)
(quote (+ 1 2)) = (+12)

(quote (datum)) can be abbreviated as ’(datum). The
two notations are equivalent in all respects.

’a - a

"#(a b c) — #(a b c)
*0 = 0O
7(+12) = (+12)

> (quote a) —> (quote a)
’la —> (quote a)

Numerical constants, string constants, character constants,
vector constants, bytevector constants, and boolean con-
stants evaluate to themselves; they need not be quoted.

7145932 —> 145932
145932 —> 145932
)llabcll :> llabcll
Ilabcll :> llabcll

-

—

‘#(a 10) — #(a 10)
#(a 10) = #(a 10)
*#u8(64 65) — #u8(64 65)
#u8(64 65) —> #u8(64 65)
‘#t = #t

#t — #t

As noted in section [34] it is an error to attempt to alter
a constant (i.e. the value of a literal expression) using a
mutation procedure like set-car! or string-set!.

4.1.3. Procedure calls

({operator) (operand;) ...) syntax

A procedure call is written by enclosing in parentheses an
expression for the procedure to be called followed by ex-
pressions for the arguments to be passed to it. The op-
erator and operand expressions are evaluated (in an un-
specified order) and the resulting procedure is passed the
resulting arguments.

(+ 3 4) = 7
((if #f + %) 3 4) = 12

The procedures in this document are available as the val-
ues of variables exported by the standard libraries. For ex-
ample, the addition and multiplication procedures in the
above examples are the values of the variables + and * in
the base library. New procedures are created by evaluating
lambda expressions (see section [4.1.4)).

Procedure calls can return any number of values (see
values in section . Most of the procedures defined
in this report return one value or, for procedures such as
apply, pass on the values returned by a call to one of their
arguments. Exceptions are noted in the individual descrip-
tions.

Note:
evaluation is unspecified, and the operator expression and the

In contrast to other dialects of Lisp, the order of

operand expressions are always evaluated with the same evalu-
ation rules.

Note:
fied, the effect of any concurrent evaluation of the operator and

Although the order of evaluation is otherwise unspeci-

operand expressions is constrained to be consistent with some
sequential order of evaluation. The order of evaluation may be
chosen differently for each procedure call.

Note:
mate expression evaluating to itself. In Scheme, it is an error.

In many dialects of Lisp, the empty list, (), is a legiti-

4.1.4. Procedures

(lambda (formals) (body)) syntax

Syntax: (Formals) is a formal arguments list as described
below, and (body) is a sequence of zero or more definitions
followed by one or more expressions.

Semantics: A lambda expression evaluates to a procedure.
The environment in effect when the lambda expression was
evaluated is remembered as part of the procedure. When
the procedure is later called with some actual arguments,
the environment in which the lambda expression was evalu-
ated will be extended by binding the variables in the formal
argument list to fresh locations, and the corresponding ac-
tual argument values will be stored in those locations. (A
fresh location is one that is distinct from every previously
existing location.) Next, the expressions in the body of the
lambda expression (which, if it contains definitions, repre-
sents a letrec* form — see section will be evaluated
sequentially in the extended environment. The results of
the last expression in the body will be returned as the re-
sults of the procedure call.

(lambda (x) (+ x x))
((lambda (x) (+ x x)) 4)

= a procedure
- 8
(define reverse-subtract

(lambda (x y) (- y x)))

4. Expressions 13

(reverse-subtract 7 10) == 3

(define add4
(let ((x 4))
(lambda (y) (+ x y))))
(add4 6) = 10

(Formals) have one of the following forms:

e ({variable;) ...): The procedure takes a fixed num-
ber of arguments; when the procedure is called, the
arguments will be stored in fresh locations that are
bound to the corresponding variables.

e (variable): The procedure takes any number of argu-
ments; when the procedure is called, the sequence of
actual arguments is converted into a newly allocated
list, and the list is stored in a fresh location that is
bound to (variable).

e ((variable;) ... (variable,) . (variable,;1)): If a
space-delimited period precedes the last variable, then
the procedure takes n or more arguments, where n is
the number of formal arguments before the period (it
is an error if there is not at least one). The value stored
in the binding of the last variable will be a newly allo-
cated list of the actual arguments left over after all the
other actual arguments have been matched up against
the other formal arguments.

It is an error for a (variable) to appear more than once in
(formals).

((lambda x x) 3 4 5 6) = (345 6)
((lambda (x y . z) z)
345 6) — (5 6)

Each procedure created as the result of evaluating a lambda
expression is (conceptually) tagged with a storage location,
in order to make eqv? and eq? work on procedures (see

section [6.1)).

4.1.5. Conditionals

(if (test) (consequent) (alternate))
(if (test) (consequent))

syntax
syntax

Syntaz: (Test), (consequent), and (alternate) are expres-
sions.

Semantics: An if expression is evaluated as follows: first,
(test) is evaluated. If it yields a true value (see section[6.3)),
then (consequent) is evaluated and its values are returned.
Otherwise (alternate) is evaluated and its values are re-
turned. If (test) yields a false value and no (alternate) is
specified, then the result of the expression is unspecified.

(if (> 3 2) ’yes ’no) = yes
(if (> 2 3) ’yes ’no) = no
(if (> 3 2)

(-32)

(+ 3 2)) = 1

14 Revised” Scheme
4.1.6. Assignments

(set! (variable) (expression)) syntax

Semantics: (Expression) is evaluated, and the resulting
value is stored in the location to which (variable) is bound.
It is an error if (variable) is not bound either in some region
enclosing the set! expression or else globally. The result
of the set! expression is unspecified.

(define x 2)

+x 1) = 3
(set! x 4) = unspecified
+x1) = 5

4.1.7. Inclusion

(include (string;) (strings) ...)
(include-ci (string;) (strings) ...)

syntax
syntax

Semantics: Both include and include-ci take one or
more filenames expressed as string literals, apply an
implementation-specific algorithm to find corresponding
files, read the contents of the files in the specified order
as if by repeated applications of read, and effectively re-
place the include or include-ci expression with a begin
expression containing what was read from the files. The
difference between the two is that include-ci reads each
file as if it began with the #!fold-case directive, while
include does not.

Note:
the directory which contains the including file, and to provide

Implementations are encouraged to search for files in

a way for users to specify other directories to search.

4.2. Derived expression types

The constructs in this section are hygienic, as discussed
in section [£:3] For reference purposes, section [7.3] gives
syntax definitions that will convert most of the constructs
described in this section into the primitive constructs de-
scribed in the previous section.

4.2.1. Conditionals

(cond (clause;) (clauses) ...) syntax
else auxiliary syntax
=> auxiliary syntax

Syntax: (Clauses) take one of two forms, either
((test) (expressioni) ...)

where (test) is any expression, or
((test) => (expression))

The last (clause) can be an “else clause,” which has the
form

(else (expression;) (expressionz) ...).

Semantics: A cond expression is evaluated by evaluating
the (test) expressions of successive (clause)s in order until
one of them evaluates to a true value (see section [6.3).
When a (test) evaluates to a true value, the remaining
(expression)s in its (clause) are evaluated in order, and the
results of the last (expression) in the (clause) are returned
as the results of the entire cond expression.

If the selected (clause) contains only the (test) and no
(expression)s, then the value of the (test) is returned as
the result. If the selected (clause) uses the => alternate
form, then the (expression) is evaluated. It is an error if
its value is not a procedure that accepts one argument.
This procedure is then called on the value of the (test) and
the values returned by this procedure are returned by the
cond expression.

If all (test)s evaluate to #f, and there is no else clause,
then the result of the conditional expression is unspecified;
if there is an else clause, then its (expression)s are evaluated
in order, and the values of the last one are returned.

(cond ((> 3 2) ’greater)
((< 3 2) ’less))

(cond ((> 3 3) ’greater)
((< 3 3) ’less)

—> greater

(else ’equal)) = equal
(cond ((assv ’b ’((a 1) (b 2))) => cadr)
(else #£f)) = 2
(case (key) (clause;) (clauses) ...) syntax

Syntax: (Key) can be any expression. Each (clause) has
the form

(({datumi) ...) (expression;) (expressions) ...),

where each (datum) is an external representation of some
object. It is an error if any of the (datum)s are the same

anywhere in the expression. Alternatively, a (clause) can
be of the form

(({datum;) ...) => (expression))

The last (clause) can be an “else clause,” which has one of
the forms

(else (expression;) (expressionsz) ...)

or
(else => (expression)).

Semantics: A case expression is evaluated as follows.
(Key) is evaluated and its result is compared against each
(datum). If the result of evaluating (key) is the same (in
the sense of eqv?; see section [6.1)) to a (datum), then the
expressions in the corresponding (clause) are evaluated in
order and the results of the last expression in the (clause)
are returned as the results of the case expression.

If the result of evaluating (key) is different from every
(datum), then if there is an else clause, its expressions are
evaluated and the results of the last are the results of the
case expression; otherwise the result of the case expres-
sion is unspecified.

If the selected (clause) or else clause uses the => alternate
form, then the (expression) is evaluated. It is an error if
its value is not a procedure accepting one argument. This
procedure is then called on the value of the (key) and the
values returned by this procedure are returned by the case
expression.

(case (x 2 3)
((2 35 7) ’prime)

((1 46 89) ’composite)) = composite
(case (car ’(c d))

((a) ’a)

((b) ’bv)) = unspecified

(case (car ’(c d))
((a e i o u) ’vowel)
((w y) ’semivowel)
(else => (lambda (x) x))) = ¢

(and (testy) ...) syntax

Semantics: The (test) expressions are evaluated from left
to right, and if any expression evaluates to #f (see sec-
tion , then #f is returned. Any remaining expressions
are not evaluated. If all the expressions evaluate to true
values, the values of the last expression are returned. If
there are no expressions, then #t is returned.

(and (=2 2) (> 2 1)) = #t
(and (= 2 2) (<2 1)) — #f
(and 1 2 ’c (£ g)) = (£ g
(and) = #t

(or (testy) ...) syntax

Semantics: The (test) expressions are evaluated from left
to right, and the value of the first expression that evaluates
to a true value (see section is returned. Any remaining
expressions are not evaluated. If all expressions evaluate
to #f or if there are no expressions, then #£f is returned.

(or (=22) >21)) = #t
(or (= 22) (<21)) = #t
(or #f #f #f) = #f
(or (memq ’b ’(a b c))
(/300 = (b <)
(when (test) (expression;) (expressiong) ...) syntax

Syntax: The (test) is an expression.

Semantics: The test is evaluated, and if it evaluates to
a true value, the expressions are evaluated in order. The
result of the when expression is unspecified.

4. Expressions 15

(when (= 1 1.0)

(display "1")

(display "2"))
and prints 12

= unspecified

(unless (test) (expression;) (expressions) ...) syntax

Syntax: The (test) is an expression.

Semantics: The test is evaluated, and if it evaluates to #f,
the expressions are evaluated in order. The result of the
unless expression is unspecified.

(unless (=1 1.0)
(display "1")
(display "2"))
and prints nothing

= unspecified

(cond-expand (ce-clause;) (ce-clauses) ...) syntax

Syntax: The cond-expand expression type provides a way
to statically expand different expressions depending on the
implementation. A (ce-clause) takes the following form:

({feature requirement) (expression) ...)
The last clause can be an “else clause,” which has the form
(else (expression) ...)

A (feature requirement) takes one of the following forms:

(feature identifier)

(library (library name))

(and (feature requirement) ...)

(or (feature requirement) ...)

e (not (feature requirement))

Semantics: Each implementation maintains a list of
feature identifiers which are present, as well as a list
of libraries which can be imported. The value of a
(feature requirement) is determined by replacing each
(feature identifier) and (library (library name)) on the
implementation’s lists with #t, and all other feature iden-
tifiers and library names with #£, then evaluating the re-
sulting expression as a Scheme boolean expression under
the normal interpretation of and, or, and not.

A cond-expand is then expanded by evaluating the
(feature requirement)s of successive (ce-clause)s in order
until one of them returns #t. When a true clause is found,
the corresponding (expression)s are expanded to a begin,
and the remaining clauses are ignored. If none of the
(feature requirement)s evaluate to #t, then if there is an
else clause, its (expression)s are included. Otherwise, the
behavior of the cond-expand is unspecified. Unlike cond,
cond-expand does not depend on the value of any vari-
ables.

The exact features provided are implementation-defined,
but for portability a core set of features is given in ap-

pendix

16 Revised” Scheme

4.2.2. Binding constructs

The binding constructs let, let*, letrec, letreck,
let-values, and let*-values give Scheme a block struc-
ture, like Algol 60. The syntax of the first four constructs
is identical, but they differ in the regions they establish
for their variable bindings. In a let expression, the initial
values are computed before any of the variables become
bound; in a let* expression, the bindings and evaluations
are performed sequentially; while in letrec and letrec*
expressions, all the bindings are in effect while their initial
values are being computed, thus allowing mutually recur-
sive definitions. The let-values and let*-values con-
structs are analogous to let and let* respectively, but
are designed to handle multiple-valued expressions, bind-
ing different identifiers to the returned values.

(let (bindings) (body))
Syntaz: (Bindings) has the form
(({variabley) (init1)) ...),

where each (init) is an expression, and (body) is a sequence
of zero or more definitions followed by a sequence of one
or more expressions as described in section It is an
error for a (variable) to appear more than once in the list
of variables being bound.

syntax

Semantics: The (init)s are evaluated in the current envi-
ronment (in some unspecified order), the (variable)s are
bound to fresh locations holding the results, the (body) is
evaluated in the extended environment, and the values of
the last expression of (body) are returned. Each binding
of a (variable) has (body) as its region.

(let ((x 2) (y 3N
(*x xy)) = 6

(let ((x 2) (y 3))
(et ((x 7)
(z (+ x)
(x z x)))

See also “named let,” section [4.2.4]

— 35

(let* (bindings) (body))
Syntax: (Bindings) has the form
(((variableq) (init1)) ...),

and (body) is a sequence of zero or more definitions fol-
lowed by one or more expressions as described in sec-

tion .14

Semantics: The let* binding construct is similar to let,
but the bindings are performed sequentially from left to
right, and the region of a binding indicated by (({variable)
(init)) is that part of the let* expression to the right of
the binding. Thus the second binding is done in an en-
vironment in which the first binding is visible, and so on.
The (variable)s need not be distinct.

syntax

(let ((x 2) (y 3))
(let*x ((x 7)
(z (+ xy)))
(* z x))) = 70

(letrec (bindings) (body))
Syntaz: (Bindings) has the form
(({variable;) (init1)) ...),

syntax

and (body) is a sequence of zero or more definitions fol-
lowed by one or more expressions as described in sec-
tion It is an error for a (variable) to appear more
than once in the list of variables being bound.

Semantics: The (variable)s are bound to fresh locations
holding unspecified values, the (init)s are evaluated in the
resulting environment (in some unspecified order), each
(variable) is assigned to the result of the corresponding
(init), the (body) is evaluated in the resulting environment,
and the values of the last expression in (body) are returned.
Each binding of a (variable) has the entire letrec expres-
sion as its region, making it possible to define mutually
recursive procedures.

(letrec ((even?
(lambda (n)
(if (zero? n)
#t
(0dd? (- n 1)))))
(odd?
(lambda (n)
(if (zero? n)
#f
(even? (- n 1))))))
(even? 88))
= #t

One restriction on letrec is very important: if it is not
possible to evaluate each (init) without assigning or refer-
ring to the value of any (variable), it is an error. The
restriction is necessary because letrec is defined in terms
of a procedure call where a lambda expression binds the
(variable)s to the values of the (init)s. In the most com-
mon uses of letrec, all the (init)s are lambda expressions
and the restriction is satisfied automatically.

(letrec* (bindings) (body))
Syntax: (Bindings) has the form
(({variable;) (init1)) ...),

syntax

and (body) is a sequence of zero or more definitions fol-
lowed by one or more expressions as described in sec-
tion It is an error for a (variable) to appear more
than once in the list of variables being bound.

Semantics: The (variable)s are bound to fresh locations,
each (variable) is assigned in left-to-right order to the re-
sult of evaluating the corresponding (init), the (body) is

evaluated in the resulting environment, and the values of
the last expression in (body) are returned. Despite the left-
to-right evaluation and assignment order, each binding of a
(variable) has the entire letrec* expression as its region,
making it possible to define mutually recursive procedures.

If it is not possible to evaluate each (init) without assigning
or referring to the value of the corresponding (variable)
or the (variable) of any of the bindings that follow it in
(bindings), it is an error. Another restriction is that it is
an error to invoke the continuation of an (init) more than
once.

(letrecx ((p
(lambda (x)
+1 (@ CxDNN
(q
(lambda (y)
(if (zero? y)
0
+1 @ Cy1nnNN
(x (p 5)
(y x))
y)

(let-values (mv binding spec) (body)) syntax

Syntax: (Mv binding spec) has the form
(({formals;) (init1)) ...),

where each (init) is an expression, and (body) is zero or
more definitions followed by a sequence of one or more
expressions as described in section It is an error for
a variable to appear more than once in the set of (formals).

Semantics: The (init)s are evaluated in the current en-
vironment (in some unspecified order) as if by invoking
call-with-values, and the variables occurring in the
(formals) are bound to fresh locations holding the values
returned by the (init)s, where the (formals) are matched
to the return values in the same way that the (formals)
in a lambda expression are matched to the arguments in
a procedure call. Then, the (body) is evaluated in the ex-
tended environment, and the values of the last expression
of (body) are returned. Each binding of a (variable) has
(body) as its region.

It is an error if the (formals) do not match the number of
values returned by the corresponding (init).

(let-values (((root rem) (exact-integer-sqrt 32)))
(* root rem)) = 35

(let*-values (mv binding spec) (body)) syntax
Syntax: (Mv binding spec) has the form
(({formals) (init)) ...),

4. Expressions 17

and (body) is a sequence of zero or more definitions fol-
lowed by one or more expressions as described in sec-
tion In each (formals), it is an error if any variable
appears more than once.

Semantics: The let*-values construct is similar to
let-values, but the (init)s are evaluated and bindings cre-
ated sequentially from left to right, with the region of the
bindings of each (formals) including the (init)s to its right
as well as (body). Thus the second (init) is evaluated in
an environment in which the first set of bindings is visible
and initialized, and so on.

(let ((a ’a) (d ’b) (x ’x) (y ’y))
(let*-values (((a b) (values x y))
((x y) (values a b)))
(list a b x y))) == xyxvy

4.2.3. Sequencing

Both of Scheme’s sequencing constructs are named begin,
but the two have slightly different forms and uses:

(begin (expression or definition) ...) syntax

This form of begin can appear as part of a (body), or
at the outermost level of a (program), or at the REPL,
or directly nested in a begin that is itself of this form.
It causes the contained expressions and definitions to be
evaluated exactly as if the enclosing begin construct were
not present.

Rationale: This form is commonly used in the output of macros
(see section {4.3]) which need to generate multiple definitions and
splice them into the context in which they are expanded.

(begin (expression;) (expressions) ...) syntax

This form of begin can be used as an ordinary expression.
The (expression)s are evaluated sequentially from left to
right, and the values of the last (expression) are returned.
This expression type is used to sequence side effects such
as assignments or input and output.

(define x 0)

(and (= x 0)
(begin (set! x 5)

+x 1)) = 6

(begin (display "4 plus 1 equals ")
(display (+ 4 1))) = unspecified
and prints 4 plus 1 equals 5

Note that there is a third form of begin used as a library
declaration: see section [5.6.1]

18 Revised” Scheme

4.2.4. Iteration

(do (((variable;) (init1) (stepi)) syntax
o)
((test) (expression) ...)
(command) ...)

Syntax: All of (init), (step), (test), and (command) are
expressions.

Semantics: A do expression is an iteration construct. It
specifies a set of variables to be bound, how they are to be
initialized at the start, and how they are to be updated on
each iteration. When a termination condition is met, the
loop exits after evaluating the (expression)s.

A do expression is evaluated as follows: The (init) ex-
pressions are evaluated (in some unspecified order), the
(variable)s are bound to fresh locations, the results of
the (init) expressions are stored in the bindings of the
(variable)s, and then the iteration phase begins.

Each iteration begins by evaluating (test); if the result is
false (see section [6.3), then the (command) expressions are
evaluated in order for effect, the (step) expressions are eval-
uated in some unspecified order, the (variable)s are bound
to fresh locations, the results of the (step)s are stored in the
bindings of the (variable)s, and the next iteration begins.

If (test) evaluates to a true value, then the (expression)s
are evaluated from left to right and the values of the last
(expression) are returned. If no (expression)s are present,
then the value of the do expression is unspecified.

The region of the binding of a (variable) consists of the
entire do expression except for the (init)s. It is an error
for a (variable) to appear more than once in the list of do
variables.

A (step) can be omitted, in which case the effect is the
same as if ((variable) (init) (variable)) had been written
instead of ({variable) (init)).

(do ((vec (make-vector 5))
10 (+1i1))
((= i 5) vec)

(vector-set! vec i i)) — #(0 1 2 3 4)

(let ((x (1357 9)))
(do ((x x (cdr x))
(sum 0 (+ sum (car x))))
((null? x) sum))) = 25

(let (variable) (bindings) (body))

Semantics: “Named let” is a variant on the syntax of
let which provides a more general looping construct than
do and can also be used to express recursion. It has the
same syntax and semantics as ordinary let except that
(variable) is bound within (body) to a procedure whose
formal arguments are the bound variables and whose body

syntax

is (body). Thus the execution of (body) can be repeated
by invoking the procedure named by (variable).

(let loop ((numbers (3 -2 1 6 -5))
(nonneg ’())
(neg 20))
(cond ((null? numbers) (list nonneg neg))
((>= (car numbers) 0)
(loop (cdr numbers)
(cons (car numbers) nonneg)
neg))
((< (car numbers) 0)
(loop (cdr numbers)
nonneg
(cons (car numbers) neg)))))
= ((613) (-5 -2))

4.2.5. Delayed evaluation

(delay (expression)) lazy library syntax

Semantics: The delay construct is used together with
the procedure force to implement lazy evaluation or call
by need. (delay (expression)) returns an object called a
promise which at some point in the future can be asked (by
the force procedure) to evaluate (expression), and deliver
the resulting value. The effect of (expression) returning
multiple values is unspecified.

(delay-force (expression)) lazy library syntax

Semantics: The expression (delay-force expression) is
conceptually similar to (delay (force