
Scheme Reports Working Group 1 Progress

Alex Shinn

alexshinn@gmail.com

1. Introduction

Earlier revisions of the Scheme standard were made by

small groups of established implementors, where con-

sensus was required to make any change, thus ensuring

a conservative standard. The R6RS broke the conven-

tion by requiring only a simple majority for a feature to

be added, while at the same time greatly expanding its

scope. This resulted in a very large standard with many

improvements and clarifications on previous standards,

but at the same time some mistakes and questionable

design decisions. This combined with the sheer size

of R6RS resulted in a backlash from the community

- many implementors simply refused to provide R6RS

compatibility, factioning the community.

In their wisdom, the Steering Committee decided

that the next standard would be split into two separate

but compatible languages. One would be a small lan-

guage, very close to R5RS but addressing some of its

deficiencies and providing a module system; the other

would be a large language, a superset of the small lan-

guage, similar to R6RS in size and scope. The size of

the small language would not only appeal to purists, but

leave less room for newly introduced bugs. The large

language would appeal to people who want to be able

to write in a language with a broader set of features.

Working group 1 was formed to create the small

language specification, suitable for use in education,

programming-language research, embedded systems

and extension languages. The language should be

mostly compatible and comparable in size with the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

2010 Workshop on Scheme and Functional Programming August 21-22,

2010, Montreal, Quebec, Canada.

R5RS, in particular following the design precept found

in the R5RS introduction:

Programming languages should be designed

not by piling feature on top of feature, but by

removing the weaknesses and restrictions that

make additional features appear necessary.

This quotation is often overused in debates among

Schemers to attack anything new which they dislike,

but that doesn’t make it any less important a precept.

We are tasked with designing a language, not collect-

ing a list of features, and we must consider the con-

sequences of any changes we make. It’s much easier

for later standards to add new features than to remove

them.

2. Process

Compared to previous standards, there are relatively

few implementors in working group 1. This is arguably

a good thing, because users drive the future of scheme,

and because they will hopefully be more objective and

less tied to their implementation’s way of doing things.

To address the concern that we may make design mis-

takes owing to our lack of experience, we are requir-

ing proof of implementation for any change, and will

also count on the fact that the eyes of the entire Scheme

community will be reviewing the finished result.1

Also different from previous standards, we are us-

ing a competitive proposal system. Members are free

to make proposals on any issue, written up on a pub-

licly viewable wiki, or to propose existing specifica-

tions such as SRFIs, and to propose any number of vari-

ations as well. Votes are recorded on the wiki2 as a sim-

ple ranking of each member’s preferences, in order. The

1 WG2 will deal with larger and more experimental changes, for

which the members may wish to make use of the SRFI process as

was done during the R6RS drafting.
2 Votes are optionally accepted via email.

1

http://trac.sacrideo.us/wg/wiki


results are tallied using the ranked pairs method, so no

strategy is involved. This allows for multiple proposals

to be put forth without detracting from each other or

forcing an all-or-nothing situation.

In addition, many simple issues that don’t warrant a

full proposal would typically be yes/no votes, but the

preferential system allows for easy addition of options

on the fly. For instance, most issues allow default op-

tions of “module” means “yes, but I think it should be

in a separate module” and “wg2” meaning “no, but I

think it should be included in WG2.”

At different points, calls for final votes will be made

on batches of issues where discussion has died down

or no progress seems to be being made. Once finalized,

the winning proposals will be written up formally and

included in the draft standard.

A sample of the voting process is given in the ap-

pendix.

3. Issues

From past standards, SRFIs, and comments on R6RS,

a list of issues was logged into a bug tracking system.

There are currently about 70 issues, and it is anticipated

that over 100 issues will be logged before the final

draft. For the major issues we underwent a fact-finding

period, detailing the background behind the issues on

the wiki, before proceeding to write proposals.

At that point, from the issues and proposals an ini-

tial ballot of 47 items3, was created, and voting has

confirmed consensus on about 30 of the items. Email

discussion continues on the other items, and new items

will be added as the originals are finalized.

A summary of the most notable issues under discus-

sion follows.

3.1 Major Controversial Issues

These issues are still a matter of active debate and the

proposals may change substantially before standardiza-

tion.

� Module System - static R6RS-like or syntactic

Chez-like

A very natural approach to modules is to treat

module and import as new special forms, similar to

lambda, which can be composed in any manner and

expanded from macros. This would give us a more

expressive module system than R6RS, at the ex-

3 Later increased to 51.

pense of precluding alternative approaches to mod-

ule systems and risking less adoption.

The R6RS module system, on the other hand,

described only the static syntax of a module, leaving

implementation details unspecified. This is a natural

compromise because it’s easy for any Scheme to

support, so the alternate module system proposal

calls for a similar static system to R6RS, without

versions, and minor adjustments leaving room for

future extension.

� User-Defined Types - procedural or syntactic

The ability to create new types or records is

unanimously desired, but there is disagreement on

whether the means of doing so should be procedural

or syntactic. On the one hand, syntactic forms could

be built on top of procedural forms, on the other

hand purely syntactic forms could in some cases be

more efficient and could integrate easier with for-

eign object systems.

This same debate occurred among the R6RS ed-

itors, with the unfortunate result of providing both

record types in such a way that they could not al-

ways be interchanged. Most WG1 members are op-

posed to providing both on the grounds that it’s not

minimalist.

� Parameters - mutable or immutable

SRFI-39 style parameters (first class dynamic

bindings) are generally desired, and are typically

defined as the mechanism by which current-input-

port, etc. are provided and are hence a likely candi-

date for WG1. Even though WG1 will not be speci-

fying threads or any other form of concurrency, it is

felt that the behavior of parameters in the presence

of concurrent code should be specified up front. The

debate is whether parameters should be mutable (be-

yond parameterize) or not, and if so are the muta-

tions seen between separate threads.

� Binary Data - blobs or uniformly-typed vectors

Binary data is essential for FFIs, efficient binary

I/O, and compact storage of data. The two general

approaches are to provide a number of different ho-

mogeneous vector types as in SRFI-4, or to provide

a single abstract blob type with multiple accessors

for extracting different sized values from offsets into

it. A hybrid solution has also been proposed, with a

base blob type on which you can layer homogeneous

vectors.

2

http://srfi.schemers.org/srfi-39/srfi-39.html
http://srfi.schemers.org/srfi-4/srfi-4.html


� Hash Tables - R6RS or SRFI-69

SRFI-69 hash tables have the known issue that

they provide no way to use address-based hash func-

tions for eq? comparisons in a moving GC. The

R6RS hash tables address this by making eq? and

eqv? hash tables special, and hiding the hash func-

tion used. Neither of these are particularly popular,

but this is a non-essential feature and easy to push to

WG2.

� SRFI-38 - reading and writing shared structures

SRFI-38 provides procedures to read and write

shared structures with the common #0=(1 . #0#)

notation. We’re still undecided whether these should

be provided, dropped, or required for the core read/write.

3.2 Major Uncontroversial Issues

These are areas we’ve been able to agree on.

� Exceptions

There were originally two exception proposals,

which went through a number of changes before

converging to a single proposal. Although the coop-

eration is encouraging, the resulting proposal is too

minimal for direct use and is wanting for syntactic

convenience forms.

current-error-port and error will be provided.

The types of exceptions and corresponding ac-

cessors is still under active discussion. Restarts will

likely be a topic for WG2.

� Character Set

We have a well thought-out Unicode proposal

which specifies the Unicode semantics of character

and string operations in the presence of Unicode,

without requiring full Unicode support.

� Basic File System Operations

file-exists? and delete-file are essential for any

file-oriented programming. There was strong con-

sensus that they be included, though in a separate

module.

� syntax-rules escapes

The common template escape of (. . . x) to expand

into just x will be accepted.

SRFI-46 style escapes as well as tail patterns are

still undecided.

� syntax-error

A frequent complaint against syntax-rules is the

inability to provide meaningful compile-time errors,

so the addition of syntax-error is welcome by most

members.

� Internal define-syntax

There’s no good reason to allow internal define

but not internal define-syntax. This is a case where

it’s a good thing most members are users - the only

negative vote was from an implementor who didn’t

want to complicate his implementation.

� letrec�
Taken directly from R6RS and generally ap-

proved, this will also be used to specify the seman-

tics of internal define.

3.3 Syntactic Changes

Relatively minor issues, but syntax changes stand out.

� Nested and Sexp Comments

Both SRFI-30 style #jnested comments j# and

SRFI-62 style #; sexp-comments will be added to

the language.

� No Brackets

The left and right bracket characters will remain

reserved, which means you can use them to what-

ever purpose in your own implementation but should

avoid them in portable code.

� Character Literal Syntax

New character names such as #ntab in addi-

tion to the existing #nspace and #nnewline will be

added, along with numeric escapes. The names are

convenient and widely supported already, and the

numeric escapes useful and well-defined in the con-

text of our planned Unicode friendliness. The exact

list of mnemonics has yet to be determined.

� String and Symbol Literal Syntax

By the same rationale as the characters, strings

and symbols will have new escape syntax for mnemon-

ics such as "nt" and numeric escapes.

� Case-Sensitivity

This is currently a close vote, though if finalized

at the time of writing the language would be case-

sensitive. Methods of changing this behavior are still

a matter of debate.

3.4 Compatibility with WG2

These are features of the large language which may

require cooperation from the small language, and need

to be kept in mind.

� Module Phasing

3

http://srfi.schemers.org/srfi-69/srfi-69.html
http://srfi.schemers.org/srfi-38/srfi-38.html
http://srfi.schemers.org/srfi-46/srfi-46.html
http://srfi.schemers.org/srfi-30/srfi-30.html
http://srfi.schemers.org/srfi-62/srfi-62.html


With only syntax-rules, phasing is a moot issue,

but assuming the addition of low-level macros we

may need some way to provide for control of phase

distinctions in the module syntax.

� Conditional Compilation

R6RS implementations quickly realized that even

a large standard wasn’t enough for portability, and

came up with a hackish mechanism of using file

names to choose implementation-specific code. An

alternative would be something like SRFI-0’s cond-

expand, with implementation names as features,

possibly restricted to the module top-level.

� Threads

WG2 is likely to provide threads. As mentioned

in the parameters discussion, concurrency has far-

reaching implications and the consequences need to

be considered in advance.

� Binary I/O

Binary I/O is likely to introduce ports for which

the R5RS character operations are undefined. In ad-

dition, the types of current-input-port and current-

output-port and means by which those types may be

converted have implications for WG1.

� Keywords

This is an issue that comes up often. It is likely

WG2 will introduce some way to handle named

function parameters. This may involve any of a new

type, new syntax, or extensions to the lambda form.

4. Future Work

With the major issues cataloged and researched, and

concrete proposals under discussion, the next step will

be to begin finalizing votes on batches of issues so they

can be formally specified in the initial draft, due in

another 6 months. With a concrete draft available for

review we expect a large amount of feedback from the

community, using the last 6 months of the effort for

bug-fixes and editing leading up to the final draft.

We will also provide working implementations of all

proposals, including most likely a meta-circular evalu-

ator and full support from a small Scheme implemen-

tation.

A. Voting Sample

As an example vote we can consider the current bal-

lots for the user-defined types proposals. There are six

options:

� SRFI-9 - the SRFI-9 define-record-type syntax

� SRFI-99 - the SRFI-99 extensions to SRFI-9

� Hsu - a syntactic proposal by one of the WG1 mem-

bers

� SnellPym - a procedural proposal by another WG1

member

� WG2 - a vote to leave this issue to WG2

� None - Scheme should not have user-defined types

WG1 is a large group with 16 members. Of these,

there are currently 8 active voters, one of whom ab-

stained on this issue. The remaining seven votes were

(define votes

’((sr�-99 sr�-9 hsu snellpym)

(hsu)

(hsu)

(snellpym sr�-9)

(sr�-9 sr�-99)

(snellpym hsu sr�-9 wg2)

(snellpym sr�-9 hsu)))

where for each user the unlisted options are all given

equal precedence after the last listed option. We then

compute a tally of the number of times each option is

preferred over each other option, in this case:

’(((sr�-9 . hsu) . 3)

((sr�-9 . snellpym) . 4)

((sr�-9 . sr�-99) . 4)

((sr�-9 . wg2) . 4)

((hsu . sr�-9) . 1)

((hsu . snellpym) . 3)

((hsu . sr�-99) . 3)

((hsu . wg2) . 3)

((snellpym . sr�-9) . 0)

((snellpym . hsu) . 0)

((snellpym . sr�-99) . 1)

((snellpym . wg2) . 1)

((sr�-99 . sr�-9) . 1)

((sr�-99 . hsu) . 1)

((sr�-99 . snellpym) . 1)

((sr�-99 . wg2) . 1)

((wg2 . sr�-9) . 0)

((wg2 . hsu) . 0)

4

http://srfi.schemers.org/srfi-0/srfi-0.html
http://srfi.schemers.org/srfi-9/srfi-9.html
http://srfi.schemers.org/srfi-99/srfi-99.html


((wg2 . snellpym) . 1)

((wg2 . sr�-99) . 1))

We then sort these tallies, and lock in turn each pair

ranking the winner over the loser, unless this would

result in a circularity in the locked pairs so far. This

results in the following graph

’((sr�-9 hsu sr�-99 wg2 snellpym)

(hsu sr�-99 wg2 snellpym)

(snellpym wg2 sr�-99)

(sr�-99 wg2))

which when topologically sorted gives the current

linearized ranking of the options:

’(sr�-9 hsu snellpym sr�-99 wg2)

Thus if the vote were finalized at this point, SRFI-9

would be chosen as the record system for WG1, and

written up in the draft standard.

Acknowledgments

Thanks to the members of the Steering Committee,

Arthur Gleckler for his early work and preparation of

the group, the chair of WG2 John Cowan, as well as all

the members of WG1.

5


	Introduction
	Process
	Issues
	Major Controversial Issues
	Major Uncontroversial Issues
	Syntactic Changes
	Compatibility with WG2

	Future Work
	Voting Sample

