This site is a static rendering of the Trac instance that was used by R7RS-WG1 for its work on R7RS-small (PDF), which was ratified in 2013. For more information, see Home.
# Source for wiki FloatPrecision version 7

## author

cowan

## comment

## ipnr

127.11.51.1

## name

FloatPrecision

## readonly

0

## text

== Multiple inexact-number precisions ==
Scheme (before R7RS) and Common Lisp require that implementations understand short-float, single-float, double-float and long-float syntax. These are written by replacing the `e` of exponential notation with an `s`, `f`, `d`, or `l` respectively. However, there is no requirement that any of these be distinct, only that they be consistent: short-floats cannot have more precision than long-floats, for example. Common Lisp requires that `e` notation be equivalent to `f` notation by default; Scheme has no such requirement.
I asked the usual Schemes and some Common Lisps to evaluate `3.1415926535897932385s0`, `3.1415926535897932385f0`, `3.1415926535897932385d0`, and `3.1415926535897932385l0`, where the numeric value is a 64-bit version of ''π''. Common Lisps were asked about precision directly using the standard `float-bits` procedure. For Scheme, I inferred how many bits of precision were provided by the answers. Here are the results (note that IEEE doubles are 53-bit precision and IEEE singles are 24-bit precision):
All four numbers are the same and have 53-bit precision: Gauche, Gambit, Chicken (with or without the numbers egg)*, Guile*, Kawa, SISC, Chibi, SCM, Chez, Vicare, Larceny, Ypsilon, Mosh, !IronScheme, STklos*, KSI†, S7†, UMB, VX*, SXM*, Spark, Dfsch†, Inlab*, Sagittarius
All four numbers are the same and have 18-digit precision (between 59 and 60 bits): Scheme 9
All four numbers are the same and have 20-bit precision: Shoe
The first two numbers have 24-bit precision, the last two have 53-bit precision (IEEE double): Racket, NexJ, Armed Bear CL, Allegro CL, Clozure CL, CMU CL, Embeddable CL, GNU CL, Steel Bank CL, Scieneer CL
The numbers have 19-bit, 24-bit, 53-bit, and 53-bit precision respectively: !LispWorks
The numbers have 17-bit, 24-bit, 53-bit, and arbitrary (at least 64-bit) precision respectively: CLISP
The numbers have 24-bit, 24-bit, 53-bit, and arbitrary precision respectively: Kawa
No inexact numbers: !SigScheme, Dream, Oaklisp, Owl Lisp
Report syntax errors or treat input as identifiers: Bigloo, Scheme48/scsh, !TinyScheme, Dream, RScheme, BDC, XLisp, Rep, Schemik, Elk, Sizzle, !FemtoLisp
Inputs are treated as as special lexical syntax, not as numbers: Llava
== Footnotes ==
*Output is truncated
†Output is printed incorrectly

## time

2015-06-17 00:15:11

## version

7